1 Exact diagonalization
We need to evaluate the trace of this term:
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We diagonalize the Hamiltonian with
H=UuvUu"

where V is diagonal matrix with eigenvalues of H, each column of U is a eigen-
vector of H. Using
uut =1

we have
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the term becomes
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The term is then
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We can then evaluate the full trace of the matrix above.

2 Krylov method

The complexity of the above method is O(m3n), where m is the size of the
matrix, and n is the number of fermion operators in the series. Since m scales
exponentially with the number of orbitals, this can be very expensive even for
a moderate number of orbitals (say 5). Instead, we can use the Krylov method
to find the trace.

First, we find the few lowest eigenstates of the Hamiltonian |i), since they
are usually more relevant at low temperatures. Then the trace is approximately
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Then each of the term in the summation become of a series of the following
operations:
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The second operation is O(m?), so we’ll ignore it for now. For the first term,
we can generate a Krylov space using the following method: !

1. vy = v/|Jv]|,
2. Tteration: do j =1,2,...,k

(a) w= Huvj
(b) Iteration: do i =1,2...,7
i hij=w-v;
i, w=w— h;; v,
(€) hjtr = llwll, vj41 = w/hjpa
With these iteration, we generate a orthonormal basis Vi = [v1,va,. .., vk

and a k x k matrix Hy, where Hy(4,j) = h; ;.
The exponential term can be just evaluated by:
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where e; = [1,0,0,...0]T .

The complexity of this operation is O(k® + mk? + m2k). Usually a small
value (~ 3) of k is needed, thus the complexity of the computation is reduced.
Overall the complexity scales as O(m?kn).
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