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The problem & challenges 
Microorganisms, flagella, cilia and other small scale bodies are flexible and 
elastic.  They have internal mechanisms that generate forces on the fluid.  
In turn, the fluid motion they generate affects the motion of the organisms.  

We are interested in understanding the 
interaction between the forces exerted by 
the bodies on the fluid, the fluid motion 
and the feedback to the organism motion.  
Both the fluid motion and the organism 
motion are unknown. 



(Singular) Stokeslets 

Can use superposition due to linearity! 

(Stokeslet ) 



Regularized Stokeslets 

Replacing the delta function with the blob 

Gives the regularized Stokeslet 

For multiple forces at different locations: 



Streamlines around 
organisms 

Instantaneous velocity streamlines 
around virtual microorganisms near a 
wall. No-flow boundary conditions are 
enforced using a method of images. 



Flow around a cilium 
Velocity field generated during a cilium beat.  Cilium shapes were taken 
from published data.  Forces along the cilium and velocity fields were 
reconstructed using regularized Stokeslets. 
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Goal of the lamprey project 

 To simulate the lamprey swimming with 
   the muscle contraction by the internal 

activation of calcium ion flow and also the 
interaction of the external hydrodynamics.  



What is the lamprey ? 



Parasitical lamprey eel 

  http://www.ucmp.berkeley.edu/vertebrates/basalfish/petro.html   



   Lamprey illustration  

  Picture from wikipedia 



Progress on 2D 

  2D swimming simulation under simple muscle 
contraction function and the external hydrodynamics. 



Progress on 3D 
  3D swimming simulation 

under simple sinusoidal 
wave propagation 

     function and the external 
hydrodynamics 



Project on going 

 To import the muscle-calcium activation 
ODE model on this model. 



Collaboration 

  Dr.Tyler McMillen 
    (Mathematics, California State University) 

  Dr.Thelma Williams 
   (Physiology, St. George’s Hospital Medical School,London, 

Retired) 

  Dr.Eric Tytell   
   (Biology, U. of Maryland, College Park) 

  Dr. Avis Cohen 
    (Institute for System Reseach, U. of Maryland, College Park) 



 Design and Op,miza,on of a Microfluidic 
Mixing Chamber for an Immunosensor Device 

•  Miniaturized Immunosensor Devices 
–  Detect biological or chemical agents by 

analyte‐an,body binding, enzyme 
ac,vity, and electrochemical signal 
transduc,on 

•  The Mixing Challenge 
–  Analyte and an,body must mix and bind 

for signal detec,on 
–  Fluid flow is purely laminar (non‐

turbulent) at the microscale  
–  Mixing occurs primarily due to diffusion, 

requiring long length‐ and ,me‐scales, 
but may be enhanced by convec,on 

Goal:  Determine the optimal geometric configuration of 
the microfluidic mixing chamber to enhance mixing of the 

analyte and antibody through numerical simulation. 



Computa,onal Model of Mixing Chamber: 
Omega Channel Domain 

•  ‘Omega Channel’ mixing chamber designed 
by colleagues at Louisiana Tech may promote 
mixing by inducing circulatory flows  

•  Modifica,on of this design based on 
computa,onal results will reduce  number of 
mixing chambers to be manufactured and 
experimentally tested 

Example of 
Computational Domain 



Computa,onal Model of Mixing Chamber: 
Convec:on Field 

•  Incompressible flow is governed by the con,nuity and Stokes 
equa,ons; Re << 1 at microscale 

–  Pressure difference placed across the channel length 
–  No slip & no penetra,on boundary condi,ons imposed on upper and lower 

walls and obstruc,ons 
•  Veloci,es obtained using Boundary Element Method 

–  Grid‐free approach; only boundaries must be discre,zed 

–  Boundary integral equa,on linking surface veloci,es and stresses computed by 
solving system of linear equa,ons 

–  Paralleliza,on allows computa,on of very large domains 



Computa,onal Model of Mixing Chamber: 
Convec:on Field Visualiza:on 



I. Applying Density Functional Theory for Atomic 
Vacancies in Solids. 

  “Density functional theory (DFT) is among the most popular and 
versatile methods available in condensed matter physics, computational 
physics, and computational chemistry.  It is a quantum mechanical 
method used in physics and chemistry to investigate the electronic 
structure of many-body systems, in particular molecules and the 
condensed phases.” However, most DFT approximations are not very 
reliable for the  formation energy of an atomic vacancy ( missing atom ) 
in a solid.  

  We have recently designed  a “Restoring the density-gradient expansion 
for exchange in solids and surfaces.”, which yields accurate metal surface 
energies. Vacancies are the simplest lattice defects and play an important 
role for various properties of materials. Since a vacancy in a metal is a 
kind of interior surface, we expect to be able to predict vacancy formation 
energies accurately, even for metals. 



1. Functional – PBEsol(1) 
  A revised Perdew-Burke Ernzerhof GGA. The main idea of it is to restore 
the first –principles gradient expansion( µ) for exchange over a wide range of 
density gradients in solids and surfaces. It improves equilibrium properties of 
densely-packed solids and their surfaces. 

(1) John Perdew, A. Ruzsinszky, G.I.Csonka, O.A.Vydrov, G.E.Scuseria, L.A.Constantin, X.Zhou, 
K.Burke. Phys. Rev. Lett 100, 136406 (2008)  

II. Method 

2. Pseudopotential  The pseudopotential approximation is an 
method to replace the core electrons and 
the strong nucleus with an effective 
potential, so that the Schrodinger 
equation contains a modified effective 
potential term instead of the Coulombic 
potential term for core electrons.  

3. Software: ABINIT‏ 

Formation energy :      
Hv

F=Ev
tot(N-1)- Etot(N)*(N-1)/N 



III. Result (formation energy of vacancy )‏ 

0.64 0.724 125 atoms 

0.55(PW91)0.70 ‏ Ref[1](64atoms)‏ 

0.68±0.03  0.84 (AM05)0.67 0.61 ‏ Ref[2](80 cells)‏ 

0.76 0.65 0.729 64 atoms 

0.74 0.63 0.71 27 atoms 

0.61 0.55 0.57 8 atoms 
Expt.[2](ev)‏ PBE-sol (eV)‏ PBE (eV)‏ LDA (eV)‏ supercell 

Al: 

Si: 

3.59(AM05)3.58 3.65 ‏ Ref[2] 

3.6 3.10 3.04 2.91 8 atoms  

 (1)K. Carling, G. Wahnstrom,etc, Phys.Rev. Lett.85,3862(2000)‏ 

 (2)R.Armiento,A.E.Mattsson, Phys. Rev.B 72,085108(2005)‏ 



IV. Conclusion 

  PBEsol result here is not as good as that of PBE and LDA so far. But we 
have only looked at one case (Al), and need to calculate others. Possibly 
the experimental value is not as precise as it is claimed to be, or our 
calculation needs to be made more accurate. Alternatively, it could be 
that PBEsol gives a good surface energy but not a good curvature 
energy.  

  MetaGGA(1) is also good for surface energy, maybe we can try that one 
also. 

The softeware ABINIT is slow for Silicon, we are also trying another 
software VASP. 

(1)   Jianmin Tao, John P. Perdew, Viktor N. Staroverov and Gustavo E. Scuseria.  

Phys. Rev. Lett 91, 146401, (2003)‏ 



Problem and Significance 

 Conservative hyperbolic equations are numerous.  We want to solve them.  

 We wish to capture discontinuities sharply and in a non-oscillatory way, while 
achieving high-order accuracy at the smooth parts of the solution.  

Methods 

 Central-upwind schemes have been successfully applied to hyperbolic 
conservation equations.  
 A brute force upwind approach is much too intensive to get the results desired.  
 Smoothness indicators allow scheme adaption and mesh adaption . 
 Adaption allows to minimize the cost of nonlinear limiters that would be required 
to be used everywhere for an unadapted approach. 

Design of powerful black-box solver for multidimensional 
conservative laws 



Difficulties 

 Smoothness indicators attempt to point out discontinuities in our solution.  
 Some of these are self-sharpening -- shock waves -- others are not -- contact 
waves.  
 Using a limited scheme, we can deal with shock waves, however,  
 We wish to use a high order scheme to preserve the quality of the contact 
wave, as these discontinuities do not sharpen themselves every time step. 

Outcomes, extensions, future work, etc.  

 Currently, we have a functional indicator in 2D for the Euler gas dynamics,  
but the indicator is specific to that set of equations.  
 We are working towards extending from gas dynamics to a wider class of 
hyperbolic problems . 
 Ultimately, a good smoothness indicator allows for a black box solver. 


