LONI Institute - LATech

Highlights of research projects being
conducted by LI scientists at LA Tech.
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High Throughput High Energy Physics
Data Processing on LONI

Z. Dick Greenwood
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Fermilab Tevatron and LHC at CERN

« Present world’s Highest Energy *  World's Highest Energy proton-proton
proton-anti-proton collider collider in 2008
— 4km circumference — 27km circumference
Ecm|=1-96 TeV (=6.3x10"J/p > 13M - E,,=14 TeV (=44x107J/p=> 1000M
Joules on 10*m-) Joules on 10°m?)
= Equivalent to the kinetic energy of a — Equivalent to the kinetic energy of a 20t
(Zé)frmﬁg ata speed 130km/hr truck at a speed 1140km/hr (711mi/hr)
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D@ Detector ATLAS Detector

30’
1 Tracking
«  Weighs 5000 tons and 5 story tall «  Weighs 10000 tons and 10 story tall
«  Caninspect 3,000,000 collisions/second «  Can inspect 1,000,000,000 collisions/second
*  Records approximately 10,000,000 *  Records approximately 300,000,000
bytes/second bytes/second
. Records 0.5x101° (5001000100010001000) bytes ° Will record 1.5x10%° (1,500,000,000,000,000)

per year (0.5 PetaBytes). bytes each year (1.5 PetaByte).




Open Science Grid Locations
(Courtesy Open Science Grid)
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Dzero Reprocessing, 2007

4.5e+08

Remote p20 Production to 26-Sep-2007

I L R B
CCIN2P3

Of the 455 million $2ns
events processed det08 | OSCER —
remotely, LONI 5 50s08 [y UFL
processed 47,755,321 LONI
(more than 10%), and ~ sewos |~
was one of thetoptwo . | uoso
performing OSG sites § WESTGRID
(tied with the University™ 2evos L2
of Florida)! eorog | NCASTR
Included in the OSG
resources were >200 reros T
LONI CPUs managed 56407 |-
by the group.
° 02/01 03/01 04/01 05/01 06/01 07/01 08/01 09/01
Date
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Towards Non-stop Computing in HPC
environments

Box Leangsuksun, PhD

http://hpci.latech.edu

!i Louisiana Tech University



HA-OSCAR:
Self-monitoring/healing cluster

Primary HEAD L N
Mode w

HA-OSCAR

ayaayaay

Louisiana Tech University

e Production-quality Linux-cluster
project

e HA and HPC clustering techniques
to enable critical computing
infrastructure via self-healing and
self-configuration cluster system

e HA-enabled HPC and enterprise
Services.

e Self-healing with 3-5 sec
automatic failover time

e The first known field-grade open
source HA Beowulf cluster release

e Support transparent recovery for
MPI and Job Queue Fault
Tolerance

e Funded by DOE office of Science



HA-OSCAR Magazine Covers.
web site: http://xcr.cenit.latech.edu/ha-oscar

#< INTRODUCING THE OPENOFFICE NAVIGAT(]
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LONUXWORLD
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GENOME SCIENTISYS -@@m; N,
How we sequenced the
SARS virus ih’flv;e days

Virtual security zones [ Secure IMAP

/| |y mail servers

‘ Highly available ::Iusler L
management’mt OSCAR o e
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L HIGH AVAILABILITY AN HIGH PERFORMANGE

Linux Powers MCNGC Research Grid
i i SMP Performance
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Simulation of Apoptotic Pathway in Cells

Andreil Paun

!i Louisiana Tech University




SIMULATION OF APOPTOTIC PATHWAY IN HIV-1 INFECTED CELLS
Andrei Paun

1.2

A major obstacle in obtaining a cure for the HIV o O0E simuston
virus is the infection of the latent T cells of our - Scras S
Immune system. The major cause for the

depletion of the T cells in infected persons is the

cell suicide (apoptosis).
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Full Length Casp3 (100%)
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We are creating a new simulation method for the o, . 0 : ’
apoptotic pathway in HIV-1 infected cells called Time (Hour)
“Membrane Systems” simulation. ' | —— ODE simulation

= lembrane System
=== Stochastic System |
©® Experimental data

=y

The Membrane System simulation method is an
improvement over current simulation methods for
studying the behavior of cells — nearly as accurate
as solving ODE'’s, yet as fast as stochastic

o4
©

o
~

Full Length CaspB (100%)
o
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methods. | | |
% 2 4 6 8
. . . P Time (Hour)
Progress in this area will lead to clinical advances Figure 1. Comparison between the experimental
. . . data, ODE, Stochastic System (Gillespie’s algorithm)
N the treatment Of HIV |nfeCt|0nS- and Membrane System simulations of a model

system. All the 3 distinct simulation techniques
aforementioned use the exact same model of the
caspase mediated apoptosis.
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Computational Chemistry for
Hydrogen Storage and Fuel Cells

Daniela Mainardi

!i Louisiana Tech University



COMPLEX METAL HYDRIDES FOR ON-BOARD HYDROGEN STORAGE
Daniela Mainardi
Role of Titanium Catalyst in Ab/desorption of Complex Metal Hydrides
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TDOS and PDOS plots from optimised (2) pristine. (b) Ti—% and (¢) Ti—T; models.

1. Calculated substitution energies of Ti-doped (001) NaAIH, surfaces have shown almost equal
probability of substitution at both lattice and interstitial sites

2. TiAl,H, and TiAl,H, complexes are observed after geometry optimization of doped-surface
models

3. Results from DFT-MD simulations have shown the existence of the observed Ti-Al-H complexes
with time at both femperatures (423 and 448K) as well as increased association of Al and H with
the complexes as time evolves

6. K. P. Dathara and D. S. Mainardi, Molecular Simulation, 2008

Supported by DOE Basic Energy Sciences DOE-BES/ DE-FG02-05ER46246
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METHANOL OXIDATION MECHANISMS BY METHANOL DEHYDROGENASE ENZYME

Daniela Mainardi
Computational studies on Addition-Elimination and Hydride Transfer Mechanisms
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1. The results obtained from the gas-phase calculations demonstrate that
the oxidation of methanol can proceed through the addition-elimination
mechanism

2. The rate-determining step (step 3, cleavage of Cmet-H17) for MDH

Reactant-relative Energy (kcal/mol)

o . | Models A and model B shows energy barriers of 13 and 17 kcal/mol
8- Model A -%\ res pZCﬂVCIY
51 — - Model B 1
oo | | | | | | ‘;& 3. The presence of an activator (ammonia) in solvent and/or protein
R i T U Il e environment could further stabilize the intermediates and transition
Reaction Path states, thereby modifying the energy barriers for a smoother catalytic
process

Supported by DOE Basic Energy Sciences DOE-BES/ DE-FG02-05ER46246
N. B. Idupulapati and D. S. Mainardi, Molecular Simulation, 2008

T Louisiana Tech University
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Multiscale Modeling for Materials
Science
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Pedro Derosa
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Electron Transport in Polymers

» Use quantum mechanical-based calculations to study
electronic and geometrical structure of polymers.

% Geometry at a Semi-empirical level ;‘_{% : g g ; é
(AM1, MNDO, PM3) s’ - - - == |
% Electronic properties at a Density g PR h
Functional Theory level W, _—%—t— % % i § i
(83PW91/6—311++G**) -:) ':% % i § § i

Number of Monomers

» Charge transport in realistic
systems is calculated with a
Monte-Carlo approach using
parameters obtained from
quantum mechanics

!! Louisiana Tech University



From monomers to polymers
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Computational Study of Diffusion in nanostructures

0 Modeling of nanoscale processes require modeling at a
variety of space and time scales.

0 The development and implementation of reliable
multiscale models is the challenge to be faced in the next
few years.

O Combination of computational tools working at
different scales a valid approach under
implementation.

0 Atomic quantum mechanics simulations,
semiclassical and quantum  molecular
dynamics and coarse grained Monte Carlo are

- - — . ' among the tools being employed.

o ey - :.j Q Applications include diffusion of species in
L ] .

= @i . o* nanostructure and modeling of structural,

= . & ° mechanical and electronic properties of

B T R TR R TR N R Ry nanocomposites.

T Louisiana Tech University
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Data Mining and Bioinformatics

‘ Sumeet Dua \

!i Louisiana Tech University



BN} Health Sciences
NEW ORLEANS

Overview

e Dimensionality reduction, data shrinking

e Unsupervised and supervised classification
e Associative theory

e Automated Target Recognition and Tracking

* Protein data mining

* Problems with stereochemical property integration, fold prediction,
structural classification, functional annotation, multi-domain proteins

e Microarray gene expression mining
* Problems with marker gene selection, DR
e Biomedical Image Mining: Image indexing and Feature Modeling

!i Louisiana Tech University




E Information fusion: Integration of protein stereochemical

properties for classification

m Protein sequence based tools are not sensitive enough to discover similarity
between proteins because of the exponential growth in diversity of
seguences.

m We have developed a Graph Theory based Data Mining Framework to extract
and isolate protein structural features that sustain invariance in evolutionary
proteins.

et of PDB
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Methodology

el - t, | a=10 | b=7 | c=8 | d=5
e 1 t, | a=10 | e=12 | f=9 | d=5
-é: t;: | a=10 | =9 | g=3 | h=6
% ; ty | e=12 | =9 | g=3 | m=7
%ﬂ*i‘ ts | s=9 | g=3 | h=6| k=4
.,g_,t“aig;g ts | s=9 | k=4 | I=3 | n=5

(a)
(b} -
C(t;)=a C(t)=e C(t;)=a C(ty=e
Creation of Protein Structure Graphs Gayax(P) e cgt;jLs C?t3=5 {J) (d-
Example: SCOP Class Small Protein: 1CRN(A)
(a) Protein Structure Graph using Delaunay
Tessellations with distance set at 8 Angstroms H(a)={t.,t;} H(e)={tst}

{b) The Adjacency Matrix of the Protein Structure Graph ®) . H(s)={ts,tg}

Identification of centers and neighborhoods.

a) Representation of the central residue “C” uniquely colored as “e”
(green), “a” (red), “s” (blue), and their respective neighborhoods “H"
(identified here by the shades of tetrahedra). The table shows each

-
partition 3 o<
<

REEN RSN AN .

- = tetrahedron (t), its respective residues, and its respective weights.
i IL << b) The resultant Interaction Graph (1G), where a proximity edge is drawn
ES l_ qb@ between centers if they share vertices in common.

% el <>

: ! ;‘@ partition 2 I

o 1

= { partition 1 |

I 20 30 a0 50 ) 70 00

(a) Sequence Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

G

With five different hydrophobicity scales, we obtain a set of five
Interaction Graphs (I1G) representing protein 1CRN(A). The vertices for
each /G have a common vertex set V (Gryon(P)), but possess different edge
sets.

5 i ) A

20 & 38 25 40 4 5o
(b} Components (subzraph)

Summary Graph of protein 1TCRN({A)

a) Identification of connected components

b) Filtering of connected components using
Mutual Information




Protein Mining (snapshot of results)

B Consery ndJ ' ] ! ' W Conserved
a5 [ Matural

Yoof oecurrence
g

1 2 3 4 DU‘I 2 3 4 & 6 T @ 2 10 11 12 13 14 16 16 17 10 12 20 21 (1] 0 10 20 30 40 50 (1] T0 80 30 100
Number of hydrogen bonding interactions Mumber of aminoaids “ia of Solvent accessible contact area

(L]

Fig. Composition of amino acids in conserved residues of the summary graphs compared with the entire
protein representative set. On the Y-axis is the percentage of amino acids and on the X-axis. a. hydrogen
bonding interactions, b. Ooi number in an 8 A radius around the amino acid and c. solvent accessible
contact area as a percentage of residue accessibility.

* Ref.: P. Chowriappa, S. Dua, J. Kanno and H. Thompson, “ Protein Sructure Classification Based on
Conserved Hydrophobic Residues’ , to appear in the IEEE/ACM Transactions on Computational
Biology and Bioinformatics.

* Ref.: S. Dua, P. Chowriappaand R. Rajagopalan, “ Spectral Coherence Feature Extraction from
Sereochemical Scales for Protein Classification” , under review for IEEE/ACM Transactions on
Computational Biology and Bioinformatics.

!! Louisiana Tech University




n

) Frontend_GUI

Tool Features

Protein Structure Classification Based on Conserved Hydrophobic Residues

— Data Preperation

— Clazsification

— Load Datasets

C1-5elect G2 Select | Independant Protein |

— Independant Protein

Training Set |1 T A d
' C1_Select . |
& 2 Select Load Independant Protein

Dezcription

ASTRAL ASTRAL -version: 1.73

ASTRAL SCOP-5id: dingfa_

ASTRAL SCOP-s10: 92047

ASTRAI SCOP-sces:a 123 1.7

ASTRAL Sounrce-PDR: Tngf

ASTRAL Source-PDB-REVDAT: 23.5EP-03
ASTRAI Region: &

ASTRAL ASTRAL -SPACE 0.63

ASTRAI ASTRA! -AFROSPACT: 0.63
ASTRAL Data-updated-refease: 1.67

Choose Classifier {+ Random Forest { Haive Bayse

— RandomForest Settings

Training Set |

10 Fold CV |
Supply Test Protein |
CLEAR |

Mumber of Trees | 10
Mumber of Seeds | 1
Mumber of Features I a

COHFUSION MATIX
ab <=--classified as
10| a = all-alpha
00| b = all-beta

TP Rate FP Rate Precision Recall F-Measure ROC Area
Class

1 0 1 1 1 E:
[} 0 0 0 0 s

all-alpha
all-beta

Process Complete

=101 =]

30
20
10

0
-0

40

s 40
20
0
PDBid :1ng7

(DMRBL ) Data Mining Research Laboratry
College of Engineering and Science
Louisiana Tech University

Ruston, LA - 71270

Provides for the identification of conserved regions within proteins of the same family
Integration of five physico-chemical properties

Classification using Random Forest and Naive Bayes classifier

Provides for classification of independent proteins into specific classes




Information fusion: Gene Ranking through fusion of
Synchronization Experiments

o The cell cycle, or cell-division cycle, is the series

)
of events that take place in a cell leading to its ) )
. . cell division cycle begins
rep“ca“on_ {Iﬂltoslshh ¥ g
o The cell-division cycle is one of the most cell prepares {’;’3“-‘5 -:)
to divide

N ; cell grows

fundamental processes of life, allowing cells to
multiply and faithfully pass on their genetic
information to future generations.

o The first critical task in understanding such cyclic

systems is to identify the genes that are -;:Aff Yy i
periodically expressed during the cell cycle — i %
replication . 8 cell decides

focus of our work. of DNA whether o

£ :ﬁ;ﬁpl:{;:;ﬁocmsme C. INFORMATION FUSION

O A.2 Denoising B. DATA ALIGNMENT cde1s @ cdc28

®© A.3 Intersecting Gene Sets

e A.4 Normalization

5 !
Q ]

E. CLASSIFICATION USING GENETIC
ALGORITHMS

E.1 Training: Top-ranked (300, 500,

800) genes

E.2 Testing: Published benchmark

(B1, B2 and B3: known cyclic genes)

D. FEATURE EXTRACTION
D.1 Principal Component
Analysis

D.2 Skewness Moment

D.3 Kurtosis Moment




Gene ranking (snapshot of results)

M1: Zhao et al. (2001)

A|Pha:_x' 150 L__G..g__;‘l 150 '\T‘dcﬁ Alpha ‘I_-' o1 :___7‘ % '\]Gdc15
\ 1 T~ / \ bl /™. J
alay 80 /N

O P 9 > B\
— | —
192 " ~_ 184
cde28 cde28
M3: Lichtenberg et al. (2005) Qur Results (Integrated)
Alpha -~ < . cdols Alpha-cde1s -~ AU T\ Alpha-cdc28
89 /86 N\ 106\ 9 /51N 82
e T, !
\ e / o AW
46 et 39 ‘-.;__?_4_'__:'_"4-«‘_"_'_5_23_"J__.--"
R A N 100 S
cdc28. odo16-0dc28

M2: Johansson et al. (2003)

Fig. Agreement across experiments. Venn diagram
based on the top 300 genes from each experiment
are shown for the methods that provide ranked lists
for the individual and integrated experiments.

original timeseries

Fig. Data alignment for alpha and cdc15
datasets.

References: A. Alex, S. Dua, P. Chowriappa, “Gene Ranking through the Integration of
Synchronization Experiments”, to appear in the Proceedings of 2008 IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology (IEEE-CIBCBOS).

S. Dua, P. Chowriappa and A. E. Alex; “Ranking through Integration of Protein-similarity for
Identification of Cell-cyclic Genes”, to appear in the Proceedings of the Biotechnology and

Bioinformatics Symposium (BIOT-2008).




Mammogram

Medical Image Classification using Weighted Association Rules

Classification
Methodology

A\ 4

Segmentation and Parallelized
Feature Extraction modules

| Data Preparation

A\ 4

| Classifiers Training Classification
4

Association Rule
Generation

5 Rule Weighting |

We have developed a novel method
for the classification of medical
Images (mammograms) using a
unique weighted association rule
based classifier.

Isomorphic association rules are
derived between various texture
components extracted from
segments of images,

These discriminatory rules are then
used for the classification through
exploitation of their intra- and inter-

class dependencies.

* Rigorous experimentation has been performed to evaluate the rules’ efficacy
under different classification scenarios.

* The algorithm delivers accuracies as high as 89%, which far surpasses the

accuracy rates of other rule based classification techniques.




Mammogram classification (snapshot of results)

Reported Classes

Sensitivity Accuracy of different runs

- < Normal Benign  Malign
e é Normal 22 0 0
: ] 90% g Benign 1 5 0
°Tist 2nd 3 4th Sh et 7h sh sth om = | Malign 1 0 3
Pifferent spiits of data The confusion matrix for three classes
(a) considered for classification. The number
Precision Accuracy for different runs indicates the number of cases reported.
A
oo -~~~ ., ~ |- | Reference:S. Dua, V. Jain, H.W. Thompson,
e “Patient Classification using Association
T et st ot e Mining of Clinical Images”, Proc. Of the 5t
) IEEE International Symposium on Biomedical
Imaging (I1SBI “08).
The change of Precision (a) and Recall (b) _S. Dua, H. Singh, H.W. Thompson,

with different percentages of training versus " . e s
. > e e Associative Classification of Mammograms
testing data.

...................... using weighted Rules based Classification”,

! i Louisiana Tech University under review for Expert Systems and

Applications Journal (Elsevier).
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Organolithium Chemistry

Ramu Ramachandran

!i Louisiana Tech University




CYCLOPROPANATION REACTIONS OF HALOMETHYLLITHIUM CARBENOIDS
Ramu Ramachandran (with Larry Pratt at Fisk University)

Li -
>

+ —
CH,=CH, po
.:' " Liv <
X =F, Cl, Br Li—\ "X

X

A + LiX

/

Experimental evidence suggests that the direct mechanism is favored.
But the evidence is not conclusive.

An open question since the direct mechanism was proposed in 1958, and
the stepwise mechanism was suggested in 1962.

Computational studies, until recently, indicated that the step-wise
mechanism is slightly favored, contradicting most experimental findings.

However, until recently, such studies have ignored the strong tendency of
organolithium species to form aggregates.

Louisiana Tech University




Reactions of the gas phase dimers —
comparison to monomers

Monomers:
TS1 = direct
TS2 = stepwise

No energetic preference for either path

6.0
TS1
A
10 o
N
£ N
\
/
D
uT \ C )/
\ /
AN
\ /
\ /
N /
N7
_14.0 | ‘ | ‘ | ‘
-20.0 -15.0 -10.0 -5.0

Reaction coordinate

Dimer 6:
TS8 = direct
TS10 = stepwise

Clear energetic preference for
the direct path

(@

12.0 —

E,q (kcal/mol)
()]
o
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i Se C
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Reaction coordinate




Dimer 6 — structures on the reaction path

@

12.0

E;q (kcal/mal)
(o))
o

o
o

- 0 | | | |
-20.0 -15.0 -10.0 -5.0 0.0 5.0
Reaction coordinate

Louisiana Tech University




THF-solvated dimer 6 — free energy profiles
(b)

40

— e Direct mechanism is
energetically more
favorable in THF
solution.

W
o

e Similar preference also
reported in DME by
Philip and coworkers.

AG?® (kcal/mol)
N
o

=
o

I |

-10
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Finite-Difference Time-Domain Method for
Simulations

Neven Simicevic

!i Louisiana Tech University




Basis of the Method: Discretize space as well as time

VxH= lJ 19D

c e ot

VxE= —l@

c o

n+1/2  n 1,32

Hk+1f2 - Hk+1f2 (Ek-|—1 EE)
I R— cAt n41/2  n41/2
7 —Ew—ﬁ(mz(ﬂw il
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Why there is never a big enough computer

1
v At <

A 10 fru ~ ¢[Ax) 2+ (Ay) 2+ (A) 2

STATE-OF-THE-ART FDTD,2

The computation cannot be 1 kHaz 3 KHz 4 kHz 8 kHz

applied to an arbitrarily large T e e
geometry and an arbitrarily 1 day 16 days" (256 days 111 yes
short pulses, independently.
The slide borrowed from
acoustic FDTD shows that the 80GB  |640GB |4.87TB
computation time can easily 40000 ' |2 days |32 days (512 days
become unreachable.
640 GB [4.8 TB 300 TB
160000 m? |4 days 64 days 44 yrs

U. Peter Svensson — Norwegian University of Science and Technology

!i Louisiana Tech University




Proof of principle: EM pulse interaction with material

Interaction of 1-dimensional Gaussian pulse with pure water, water having
conductivity of the blood, and blood. Part of the pulse energy is reflected, part is

absorbed, and part of it is re-radiated into the space.

!i Louisiana Tech University



On a larger scale

!! Louisiar



Application in Medicine

Numerical experiment: partial body exposure to UWB
Gaussian pulse.

Region of
exposure ~—

"T‘tf)uisi



Exposure to UWB pulse

Propagation of the UWB pulse through exposed sample.

!! Louisiana Tech University




More: FDTD for Quantum Mechanics

/ ] 2 C(I,JK) o 12 ) cAt ] _
ot T Ky = oY T K — OO JK +1)— 0. LK —1
1 (LK) ok b IR o Ty (L L K+ 1) — (L LK)
+ VI 41,0, K)— U -1, 0, K) — (U3, J+1,K) — ¥} (I.J — 1,K))] (11)

4o FAY:
RC™(I,J K

] [AR(I,J KU, J,K) — i AR, J, KU, J.K) + AR(I, J K)U2 (1, 1, K))
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FDTD solutions of the Dirac equation: Relativistic treatment of electron
motion.




Non-relativistic model of the simplest chemical bond:

+
2

0.35
0.30
0.25
v, 3000
S wils)} 2000

0.15
0.10
0.05

1000
08

® |w|? bonding 55

Bonding and anti-bonding
molecular orbitals. A

Static. |\|/|2 anti-

Basis of almost all of quantum bonding

C h em ISt ry . Plot of the electron density in the xy plane for the hydrogen molecule ion
HZ with (a) a 1s sigma bonding orbital and (b) a 1s sigma antibonding orbital. Note the
buildup of electron density between the nuclei with the bonding orbital. Also note that
with the antibonding orbital the electron density is zero along a line perpendicular to the
line between the nuclei and halfway between the nuclei. The internuclear axis is along x.

Louisiana Tech University



But ... what is an electron in such a chemical
bond really doing, as a function of time?

* You are among the first 50 - 200 people in the
world to see this ...

e The first was Neven, of course.

e The second was me, and | was here in Baton
Rouge, at the Cook Hotel at the time!

e The third was probably Les Guice.




The electron at work, in the simplest chemical bond

!! Louisiane.



Thank You!
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