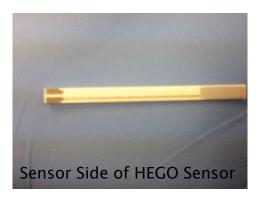
Structural Analysis of Bosch Heated Exhaust Gas Oxygen Sensors after Voltage Treatments

Regina Blackman¹, Arwa Alshowaier², Erica P. Murray² ¹Department of Chemistry, Francis Marion University ²Institute for Micromanufacturing, Louisiana Tech University

Outline


- Background
- Purpose of Research
- My Role During This Summer
- Procedure
- Results
- Conclusion
- Remaining Work

Background

- Heated Exhaust Gas Oxygen (HEGO) Sensors detect oxygen emissions from engines
- Help to optimize air-fuel ratio within the engine
- If the oxygen level is:
 - Too high may lead to engine misfire
 - Too low leads to wasted fuel

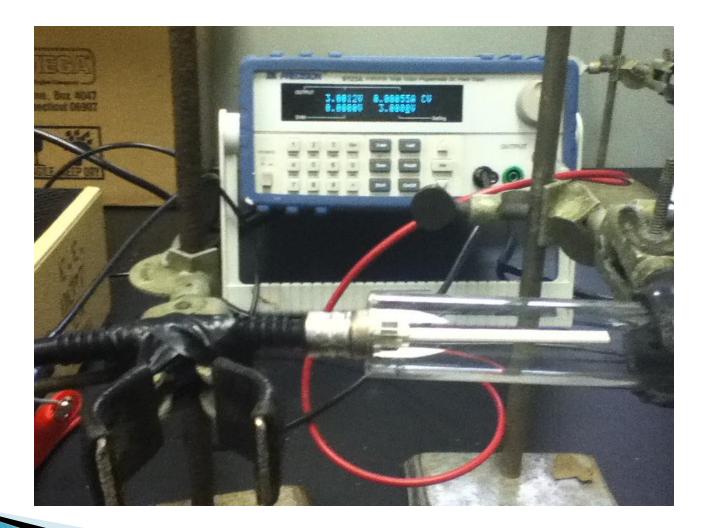
HEGO Sensors

- Composed of platinum electrodes encased in an Yttria Stabilized Zirconia (YSZ) electrolyte
- Two sets of electrodes
 - Heater electrodes
 - Sensor electrodes
- Vent in the center of the electrodes

HEGO Sensor Research

Blackening

- Caused by a strong chemical reduction or when oxygen is taken from the lattice structure
- Occurs when a large voltage is applied to the YSZ
- Change in the lattice structure can be observed using:
 - Optical Microscopy
 - Scanning Electron Microscopy (SEM)
 - X-Ray Diffractometry (XRD)


Purpose of Research

- Define the parameters and optimal operating conditions of the Bosch HEGO Sensors
- By observing the voltage treated sensors, it is possible to understand what leads to the blackening phenomenon.

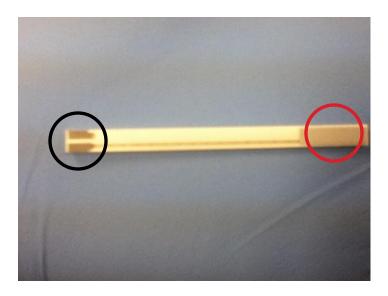
My Role

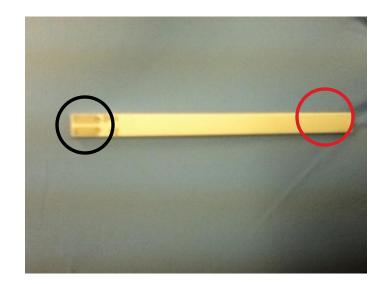
- Analysis of YSZ structure after voltage treatments
- Finding the "hot spot" on the HEGO sensors
- Determining the temperature of the sensor at each voltage applied to the heater
- Defining conditions for future experiments

Setup

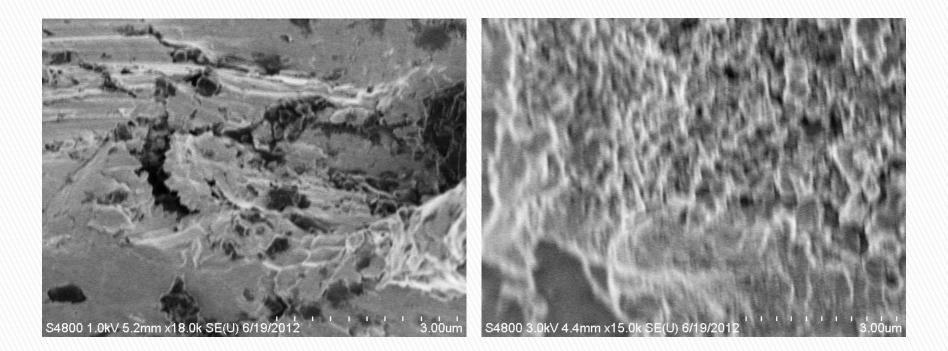
Procedure

- Found hot spot and temperatures using thermocouple
- Applied a voltage across heater and sensor for various amounts of time
- Cut sensor with low speed saw
- Examined using SEM, XRD, and optical microscope

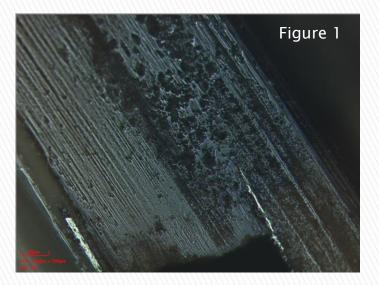

Sample Conditions (highlighted rows indicate blackened samples)

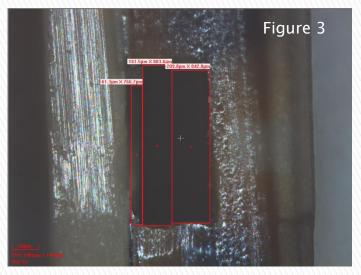

Sample Number	Voltage (V)	Temperature (°C)	Time Period (hrs)
1	2	400 (9 V)	4
2	Raw Sample (No Voltage Treatment)		
3	2	400 (9 V)	2
4	2	400 (9 V)	3
5	2	400 (9 V)	4
6	3	400 (9 V)	1
7	3	700 (18 V)	0.333
8	2	750 (20 V)	4
9	2.8	750 (20 V)	1
10	2.6	750 (20 V)	3.5
11	2.9	750 (20 V)	2
12	2.9	750 (20 V)	12.5
13	2.9	750 (20 V)	24

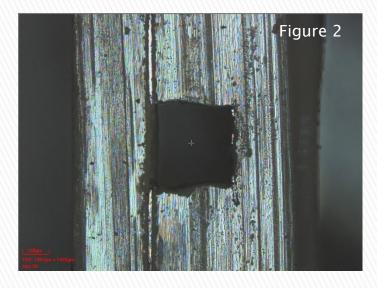
Results


- Most important fractions of the sensor were 1 and 8
- Fraction 8 was at the sensor's "hot spot"
 - Voltage is applied here
 - Blackening occurs at the hot spot
 - Size of vent increased
- Increase in vent size noticed when comparing fraction 8 with fraction 1
- Samples were also compared to raw (untreated) sample

HEGO Sensors


Sample 6 SEM




Fraction 8 (blackened portion of sample)

Fraction 6

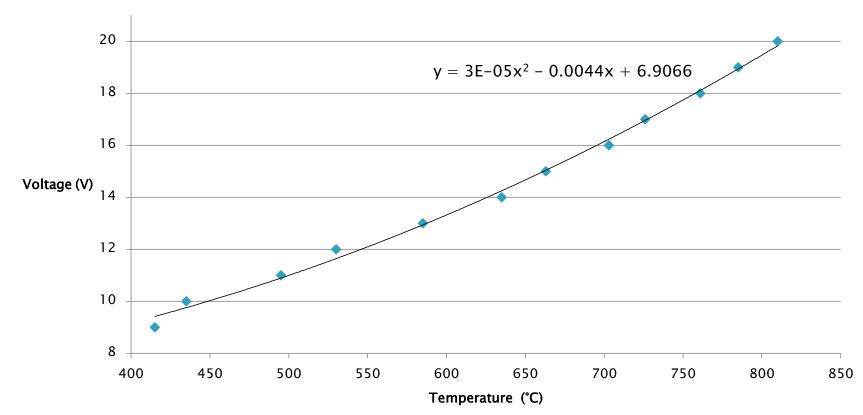
Sample 6 Optical Microscope

•Figure 1 displays blackening at fraction 8

•Figure 2 displays fraction 1

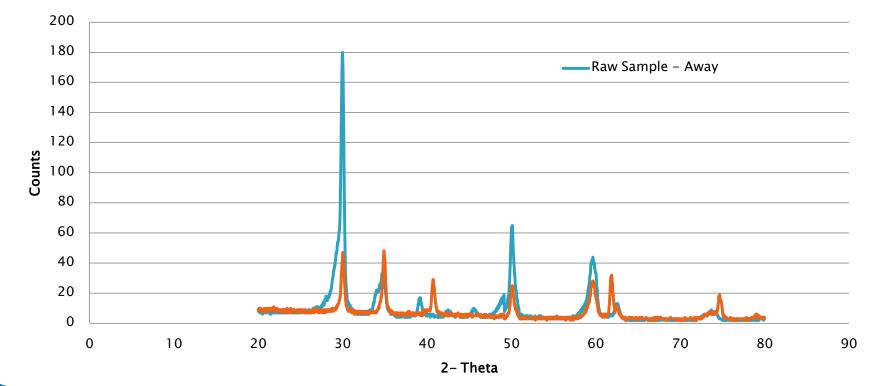
•Figure 3 displays the vent size at fraction 8

Raw Sample Optical Microscope



Fraction 1

Fraction 8


Thermocouple Data

Voltage vs. Temperature

XRD

6th Sample (3V - 1h)-(Blackened) & Raw Sample / Away from the electrodes

Conclusion

- Blackening may affect the functionality of HEGO Sensors
- Of 12 treated samples, only 2 were blackened
- Upper threshold of parameter seems to be 3V
- Temperature helps to speed up the blackening
- Microscopy images show more about the structure of the sensors

Future Work

- Further examination using the optical microscope
- Determining the cause of the expanding hole
- Discovering what happens to the YSZ when the hole expands
- Determining the parameters of the HEGO Sensor

Acknowledgements

- Dr. Erica P. Murray
- Arwa Alshowaier
- Ford Motor Co.
- Dr. Alfred Gunasekaren
- Bobby Matthews
- LA-SiGMA and NSF