

Ab-initio calculation of optico-electronic and structural properties of lithium oxide (Li_2O)

JOSHUA ZIEGLER¹, DANIEL POLIN², YURIY MALOZOVSKY³, DIOLA BAGAYOKO³

¹ CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OH
² NEW YORK UNIVERSITY, NEW YORK CITY, NY
³ SOUTHERN UNIVERSITY AND A&M COLLEGE, BATON ROUGE, LA

Outline

► Theory

- ► DFT-LDA
- ► LCGO
- ► BZW-EF
- Previous Results
- Our Results
 - Band Structure
 - Equilibrium Lattice Constant
 - Equilibrium Band Structure
 - Density of States
- Conclusion

DFT-LDA and LCGO

DFT (Density Functional Theory) [1]:

- $[-\hbar \hat{1} 2 / 2m \nabla \hat{1} 2 + v(\mathbf{r}) + 1/2 \int n(\mathbf{r} \hat{1}') / |\mathbf{r} \mathbf{r} \hat{1}'| d\mathbf{r} \hat{1}'] \Psi + V \downarrow xc (n(\mathbf{r})) \Psi = E \Psi$
- LDA (Local Density Approximation) [2]:
 - > Provides form of $V \downarrow xc(n(\mathbf{r}))$
- LCGO (Linear Combination of Gaussian Orbitals):
 - Numerical simplification that assumes n(r) can be written as a sum of atomic orbitals.

https://upload.wikimedia.org/wikipedia/commons/6/62/Spherical_Harmonics.png

Bagayoko, Zhao, Williams Method, as Enhanced by Ekuma and Franklin (BZW-EF) [3]

- Infinite possible combination of orbitals
- Must select one that represents physical properties
- Selection Rules:
 - Must have minimum total electron energy
 - Must be smallest set of orbitals that has the minimum total energy

Others' Results

Experimental Results: >6.6 eV [14] 7.0 - 7.5 eV [15] 7.99 eV [16]

Potential for forbidden transitions or Bernstein Moss effect, so experimental measurements may be higher than actual band gap.

Method	Package	Band Gap (eV)	Re ference
DFT-LDA		5.3 [Г — Г]	[4]
		5.3 [Г — X]	[5]
	VASP	5.095 [Г—Х]	[6]
	WIEN2K	4.92 [Г — X]	[7]
DFT-GGA	WIEN2K	4.96 [Г — X]	[7]
DFT-WCGGA	WIEN2K	4.96 [Г — X]	[8]
DFT-EVGGA		6.14 [Г — X]	[7]
PW91 GGA	VASP	5.39 [Г — Х]	[9]
	VASP	5.00 - 5.02 [Г — Г]	[10]
	CRYSTAL03	5.05 [Г—Х] - 8.00 [Г— Г]	[10]
PW91PW GGA Hybrid	CRYSTAL03	6.94 [Г—Х] - 10.19 [Г— Г]	[10]
B3LYP SemiEmpirical Hybrid	CRYSTAL03	7.19 [Г — Х] - 10.23 [Г — Г]	[10]
DFT-SIC		8.3 [Г — X]	[11]
DFT-LDA+GW		7.4 [Г — Г]	[4]
TB-LMTO		5.809 [Г — Х]	[12]
TB-LMTO	WIEN	5.0	[13]

Label	Li ⁺ Valence	O ²⁻ Valence	Orbitals	Gaps
1	2s ⁰ 2p ⁰	2s ² 2p ⁶	24	5.768 d
2	2s ⁰ 2p ⁰ 3p ⁰	2s ² 2p ⁶	36	5.754 d
3	2s ⁰ 2p ⁰ 3p ⁰	2s ² 2p ⁶ 3p ⁰	42	5.719 d
4	2s ⁰ 2p ⁰ 3p ⁰ 3d ⁰	2s ² 2p ⁶ 3p ⁰	62	4.952 i
5	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰ 3d ⁰	2s ² 2p ⁶ 3p ⁰	66	4.952 i
6	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰ 3d ⁰	2s ² 2p ⁶ 3p ⁰ 3d ⁰	76	4.930 i
2*	2s ⁰ 2p ⁰ 3p ⁰ 4p ⁰	2s ² 2p ⁶	48	5.775 d
3*	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰ 4s ⁰ 4p ⁰	2s ² 2p ⁶	56	5.735 d
3**	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰	2s ² 2p ⁶	40	5.741 d
4**	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰ 4p ⁰	2s ² 2p ⁶	52	5.756 d
5**	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰ 4p ⁰	2s ² 2p ⁶ 3p ⁰	58	5.738 d
4*	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰ 4s ⁰ 4p ⁰	2s ² 2p ⁶ 3p ⁰	62	5.722 d
5*	2s ⁰ 2p ⁰ 3s ⁰ 3p ⁰ 4s ⁰ 4p ⁰	2s ² 2p ⁶ 3s ⁰ 3p ⁰	74	5.381 d

Calculations Performed

Calculations Performed, with band gaps given in eV, and d and i representing direct (Γ) and indirect (Γ -X), respectively

Energy (eV)

Band Gap for High α: 6.181 eV

Band Gap for Low α: 5.738 eV

Irreducible Brillouin Band

https://upload.wikimedia.org/wikipedia/commons/5/53/Fcc_brillouin.png

Total Energy vs. Lattice Constant

Equilibrium Lattice Constants:

Low α: 4.501 Å High α: 4.469 Å

The minimum total energy of both sets of calculations (low and high a) are arbitrarily set to -350 meV so that they can be plotted on the same graph. The high a minimum is **2.00815 eV** lower than the low a minimum.

Equilibrium Band Structure

Band Gap for L α: 6.256 eV

Densities of States

Room Temperature

Zero Temperature

Partial Densities of States

Room Temperature

Zero Temperature

Effective Masses

Carrier	Γ-L	Г-Х	Г-К
Heavy Hole	-4.37	-1.72	-2.88
Heavy Hole	-4.37	-1.72	-1.90
Light Hole	-0.52	-0.80	-0.69

Point	Longitudinal	Transverse	Transverse
Λ	0.46 (111)	0.69 (110)	0.60 (211)
Minimum			
Δ Minimum	1.02 (010)	2.41 (101)	2.92 (100)
Σ	0.61 (110)	0.99 (001)	0.85 (111)
Minimum	are in m _e .		

https://upload.wikimedia.org/wikipedia/commons/5/53/Fcc_brillouin.png

Conclusion

Better results than previous ab-initio calculations

- Identified subtle features of Li₂O properties
- More experiments necessary to confirm predictions

References

- ▶ [1]: P. Hohenberg and W. Kohn. "Inhomogeneous Electron Gas". In: *Physical Review B* 136.3 (1964), p. 864.
- ▶ [2]: W. Kohn and L.J. Sham. "Self-Consistent Equations Involving Exchange and Correlation Effects". In: Physical Review B 140.4 (1965), p. 1133.
- ▶ [3]: Diola Bagayoko. "Understanding density functional theory (DFT) and completing it in practice". In: AIP Advances 4 (2014), p. 127104.
- [4]: Stefan Albrecht, Giovanni Onida, and Lucia Reining. "Ab initio calculation of the quasiparticle spectrum and excitonic effects in Li₂O". In: Physical Review B 55 (16 1997), p. 10278.
- [5]: Yu. N. Zhuravlev, Yu. M. Basalev, and A. S. Poplavnoi. "Electronic structure of alkali metal oxides and sulfides". In: Russian Physics Journal 44.4 (2001), p. 398.
- ▶ [6]: G. Jaiganesh and S. Mathi Jaya. "Ab-Initio Study of Magnetic and Electronic Properties of Co/Ni Substituted Li₂O". In: ().
- [7]: M. Moakafi et al. "Electronic and optical properties under pressure effect of alkali metal oxides". In: The European Physical Journal B 64 (2008), p. 35.
- [8]: S. M. Alay-e abbas et al. "First principles study of structural and electronic properties of alkali metal chalcogenides: M₂Ch [M:Li, Na, K, Rb; Ch: O, S, Se, Te]". In: International Journal of Modern Physics B 25 (29 2009), p. 3911.
- [9]: Yuhua Duan and Dan C. Sorescu. "Density functional theory studies of the structural, electronic, and phonon properties of Li₂O and Li₂CO₃: Application to CO₂ capture reaction". In: *Physical Review B* 79 (2009), p. 14301.
- [10]: Mazharul M. Islam, homas Bredow, and Christian Minot. "Theoretical Analysis of Structural, Energetic, Electronic, and Defect Properties of Li₂O". In: Journal of Physics and Chemistry B 110 (2006).
- [11]: Björn Baumeier et al. "Electronic structure of alkali-metal fluorides, oxides, and nitrides, Density functional calculations including selfinteraction corrections". In: Physical Review B 78 (2008), p. 125111.
- [12]: R. D. Eithiraj, G. Jaiganesh, and G. Kalpana. "Electronic structure and ground-state properties of alkali-metal oxides-Li₂O, Na₂O, K₂O, Rb₂O: A first principles study". In: *Physics Review B* 396 (2007).
- ▶ [13]: N. Jiang and J.C.H. Spence. "Core-hole effects on electron energy-loss spectroscopy of Li₂O". In: Physical Reiew B 69 (2004), p. 115112.
- ▶ [14]: Walter Rauch. "Die ultravioletten dispersionsfrequenzen der Alkalioxyde." In: (1940).
- \blacktriangleright [15]: Lizhong Liu et al. "Bulk and surface electronic structure of Li₂O". In: *Physical Review B* 54 (3 1996), p. 2236.
- [16]: Yoshinobu Ishii, Jun-ichi Murakami, and Minoru Itoh. "Optical Spectra of Excitons in Lithium Oxide". In Journal of the Physical Society of Japan 68 (2 1999).

Acknowledgements

This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.