

DYNAMICS OF BOSE-EINSTEIN CONDENSATES IN DIFFERENT RANDOM POTENTIALS

KHANG PHAM

MENTOR: DR. JUANA MORENO, SAMUEL KELLAR, KA MING TAM

BEC IN RANDOM POTENTIALS EQUATION

$$i\partial_t \psi = \left[-\frac{\partial_x^2}{2} + V_{ho}(x) + V(x) + g\left|\psi\right|^2 - \mu\right]\psi$$

- V_{ho} Harmonic potential
- *V* Random potential
- $g|\Psi|^2$ Interaction between particles
- μ Chemical potential

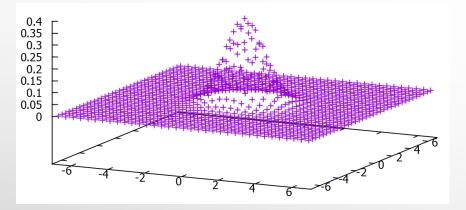
 Finite Difference – a method for solving differential equations by approximating them with difference equations. For example,

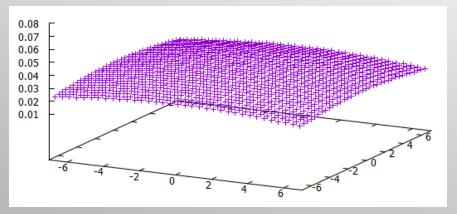
$$f'(x_j) = \frac{f(x_{j+1}) - f(x_j)}{\Delta x} + O(\Delta x^2)$$

• Crank-Nicolson – a finite difference method.

$$\frac{f_j^{n+1} - f_j^n}{\Delta t} = \frac{1}{2} \left(\frac{f_{j+1}^{n+1} - 2f_j^{n+1} + f_{j-1}^{n+1}}{(\Delta x)^2} + \frac{f_{j+1}^n - 2f_j^n + f_{j-1}^n}{(\Delta x)^2} \right)$$

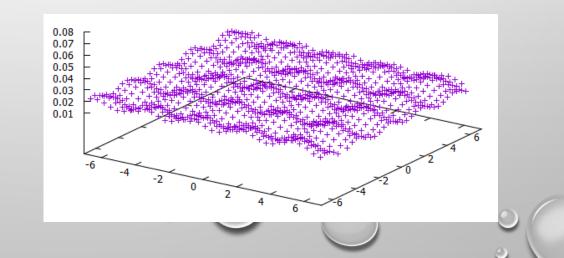
HPX – HIGH PERFORMANCE PARALLEX (HTTP://STELLAR.CCT.LSU.EDU/PUBS/HPX_1.PDF)

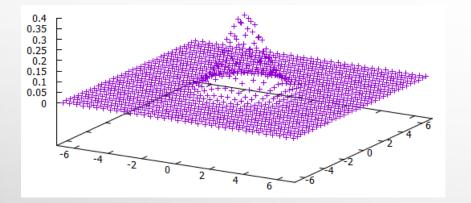

- HPX a c++ library that distributes the works to different nodes of a cluster.
- HPX minimizes slow
 - Starvation occurs when there is not enough computation for the program to maintain high performance and utilize all resources
 - Latencies cause stoppage in the code due to the waiting for information to be received
 - Overhead is the work required to manage parallel actions
 - Waiting for Contention resolution is the time delays for different parts of the program to get an overshared information
- Improves slow in many ways, for examples:
 - Dataflow
 - Future

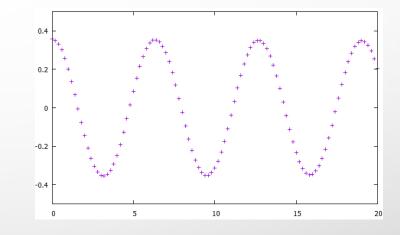

- To test the program, we solve for wave functions of different potentials such as
 - Zero potential
 - Harmonic potential
 - Harmonic potential with disorder

SCHRODINGER EQUATION WITH NO POTENTIAL

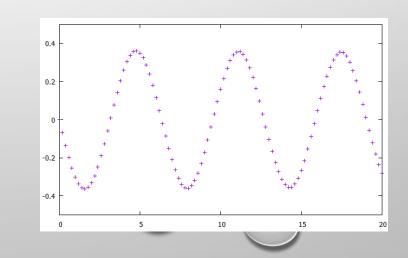
Probability amplitude at the earliest time


Probability amplitude after half of the total time has passed

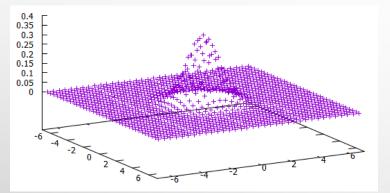

Probability amplitude after a fourth of the total time has passed

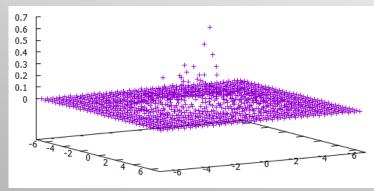


Probability amplitude at the latest time

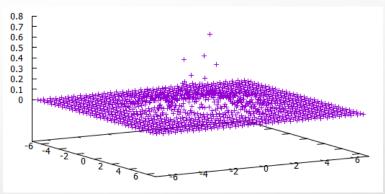

SCHRODINGER EQUATION WITH HARMONIC POTENTIAL

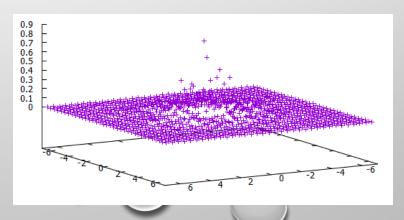
Real part of $\Psi(0)$


The probability amplitude of the wave function over time.


Imaginary part of $\Psi(0)$

SCHRODINGER EQUATION WITH RANDOM HARMONIC POTENTIAL


Probability amplitude at the earliest time


Probability amplitude after half of the total time has passed

Probability amplitude after a fourth of the total time has passed

Probability amplitude at the latest time

- THUS FAR, THE CODE IS FULLY FUNCTIONAL AND CAN SIMULATE MANY WAVE FUNCTION WITH DIFFERENT POTENTIALS.
- READY TO ADD IN NON-LINEAR TERM $g|\Psi|^2$.

