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Lithium ion batteries are currently the most advanced and
powerful rechargeable batteries for consumer electronic products.

*As the technology industry rapidly expands there is an insatiable
demand for longer-lasting and faster-charging batteries.
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e Lighter than other materials

Why Lithium?

 Most commercially viable chemistry for PHEVs
* Highly reactive with much higher energy and power density

* No “memory effect” as in NiCd
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* Design flexibility and safest in use
* Environmentally friendly
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Figure 1*: Revenue contributions by different battery chemistries

*Frost & Sullivan (2009)



V‘V Research

* Investigate lithium sorption in different
materials using computational chemistry

* Determine the ability of new materials to
serve as rechargeable lithium battery
anodes
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v~ Why Tin Sulfide?
e Battery anodes are of particular interest as the anode
material has principal influence on the performance of

lithium ion batteries.
* Explore tin sulfide as potential battery anode material

o Low cost
o High theoretical specific capacity
o Nontoxic and ubiquitous
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[ ) Crystal Structure

* Layered, hexagonal crystal structure ceeeee|
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* Consists of 2 layers of close packed sulfur -======
anions with tin cations between them in
octahedral coordination
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Fig. 1. XRD patterns of SnS,-200-10.5 (the bottom of the image indicates the JCPDS
data (JCPDS: 23-0677) for SnS;).

Kim, Tae-Joon, Chunjoong Kim, Dongyeon Son, Myungsuk Choi,and Byungwoo Park. "Novel SnS2 - nanosheet anodes for lithium-ion batteries.”
27 February 2007. Journal of Power Sources. 25 June 2014.
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‘( Objectives

Examine structural changes
of nanoparticle and
crystalline SnS, upon Li

adsorption.

— Study differences
between intercalation,
conversion, and alloying

Calculate voltages as a
function of Li content along
with capacity and compare
with experiment
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Approach

Computational studies of Li adsorption on tin sulfide nanoparticles
Materials Studio 6 DMol3 used for computations
o PBE GGA functional, DNP basis set

MATERIALS

STUDIO

ackage
imulation

Computational studies of Li adsorption on tin sulfide periodic crystalline systems
VASP (Vienna ab initio simulation package)
o PBE GGA functional, plane wave basis set, Monkhorst-Pack k-point
sampling
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Cluster Bond Distances -
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* Calculated bond distances between atoms in the Li,(SnS,)s nanoparticle.

* AslLiisadded, Sn and S are being pushed apart with concomitant formation of Li-Sn
bond (alloying)



# of nearest neighbors

Cluster Atom Analysis

Average Number of Nearest Neighbors
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As more Li is added the number of Sn-S decreases while the number of Sn-Li increases
Around an 8:1 Li:Sn ratio the number of Sn-Sn and Sn-S bonds drastically decreases
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A

Li atoms reside
between S layers

V.( Crystalline System
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Sn8 island S16

V.V

conversion

 Starting from the 32 Li system (Li,S),,(Sn),, Li atoms were added and removed to access the
range of 8 Li to 72 Li.
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Nernst Equation
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Volume (A3)
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\ Conclusions

* For nanoparticles and crystalline systems as Li content
increases, mechanism changes from adsorption/intercalation

to conversion to alloying.

 (Qualitative agreement between experimental and calculated
discharge curves.

 The volume expansion trends of the nanoparticle and
crystalline system are similar




