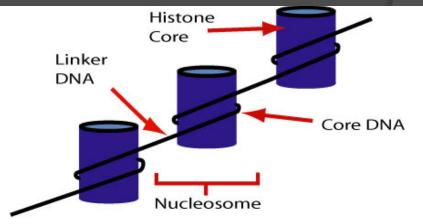
REDEVELOPING AND OPTIMIZING THE INTERACTIVE CHROMATIN MODELING WEB SERVER [ICM]

Inderbir Sondh Mentor: Dr. Tom Bishop

DNA


-> 4 Bases- A, C, G, and T

-> Going along a strand gives the sequence

- -> A pairs with T, G with C
- -> Exists in folded and unfolded forms

-> Histone = protein that DNA wraps around

What is the ICM?

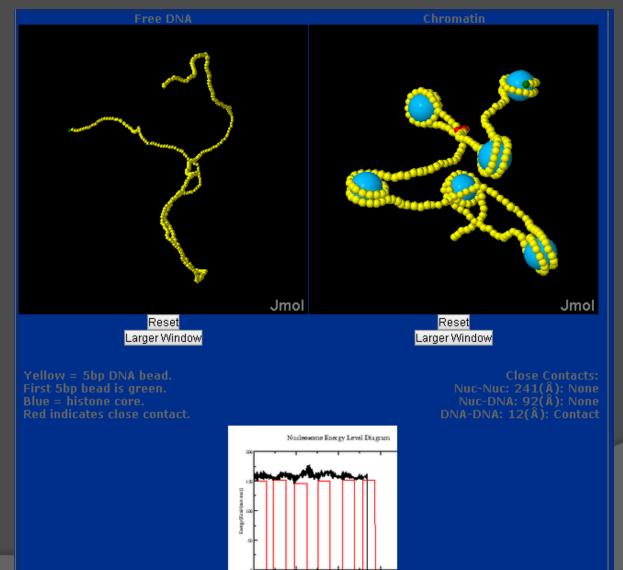
 Software that generates a 3-D model of a given DNA sequence.

Initial Inputs:

- Sequence Input Options:	This option will use default values for the pla parameters.
Default Type Upload Sequence Sequence Sequence This option uses the default sequence. GenBank #V01175: the GR MMTV LTR.	These options control automatic placement c nucleosomes in the energy landscape.
This option allows for sequence input.	Energy Options $E_{nuc} = \frac{1}{2} \∑(K(X_{nuc} - X_{DNA})^2)$
Please insert your sequence: Type or cut-and-paste sequence here.	$K = MD-B.dat \bullet ?$ $X_{nuc} = 01 kx5.min \bullet ?$
	X _{DNA} = MD-B.par V ?
	Occupancy: 70 2 ?
Try one of our samples below or search <u>PubMed</u>	Linker Length: 20 🦼 ?
55_dimer.	This option places nucleosomes at the assign positions. An energy landscape is provided, to used in determining nucleosome placements.
uploaded. Choose File No file chosen	Energy Options Enue = ½ ∑(K(X _{nue} - X _{DNA}) ²

Nucleosome Placement Options

Use Default O Use Energy


Specify

Nucleosome Placement

cement

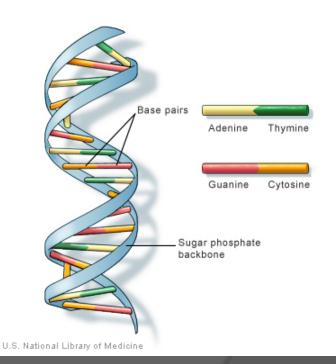
ied starting but is not

ICM Final Output

Needed Improvements to ICM

- Currently can only efficiently handle sequences around 10,000-20,000 base pairs long.
- There are many sequences that are much longer (human genome is billions long!)
- Interface should be easier to use and integrated with other DNA research tools.

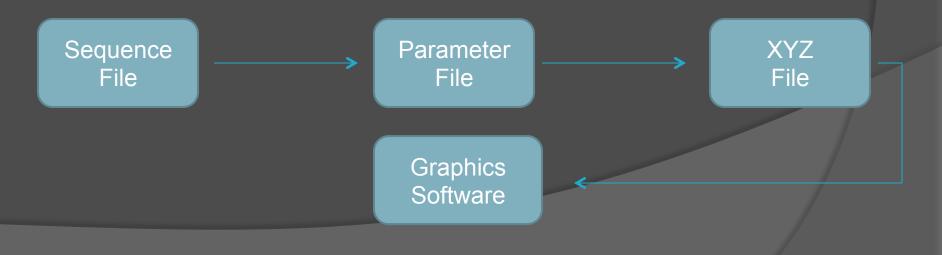
Goals


- Redesign ICM with an object oriented approach including steps to increase efficiency (enough to handle 1 Mil base pairs)
- Integrate with an existing genome browser for more intuitive usage and increased functionality.

Helical Parameters

 Used to describe each DNA base pair relative to an adjacent base pair

 Translations across XYZ: Shift, Slide Rise


Rotations around XYZ: Tilt, Roll, Twist

ICM Workflow/Logistics

 Inputs: DNA Sequence, Energy Models, Temperature, Nucleosome Placement

 Outputs: XYZ File, 3-D Rendering (using Jmol)

Sequence File Reference File

😑 sequ	uence.txt 🗵	16	base-pai	rs										_
0 ***local base-pair & step parameters***														
1	A		Shear	Stretch	Stagger	Buckle	Prop-Tw	Opening	Shift	Slide	Rise	Tilt	Roll	Twist
	~	A - A	-0.06	-0.02	-0.03	0.14	-6.91	0.44	-0.06	-0.03	3.17	-1.49	1.32	31.92
2	с	A-C	0.03	-0.02	-0.02	-1.43	-7.77	0.20	-0.05	0.04	3.19	0.27	2.14	32.00
3	G	A - G	0.03	-0.02	-0.02	-1.43	-7.76	0.21	0.10	-0.25	3.22	-0.58	3.16	28.49
	2	A-T	-0.06	-0.02	-0.03	0.13	-6.91	0.43	-0.00	-0.08	3.12	0.00	2.01	30.18
4	A	C- A	-0.06	-0.02	-0.03	0.12	-6.92	0.42	0.02	0.25	3.12	0.21	9.19	27.86
5	С	C-C	0.03	-0.02	-0.02	-1.44	-7.79	0.20	0.15	-0.28	3.34	0.15	5.68	29.57
6	~	C-G	0.03	-0.02	-0.02	-1.42	-7.77	0.20	0.00	0.30	3.07	0.00	8.07	27.24
6	с	C-T	-0.06	-0.02	-0.03	0.13	-6.90	0.42	-0.10	-0.25	3.22	+0.58	3.15	28.50
7	С	G- A	-0.06	-0.02	-0.03	0.13	-6.91	0.42	-0.05	0.22	3.23	-0.30	3.72	32.99
8	т	G-C	0.03	-0.02	-0.02	-1.41	-7.76	0.20	-0.00	0.24	3.23	0.00	1.65	34.74
°	1	G- G	0.03	-0.02	-0.02	-1.44	-7.76	0.21	-0.15	-0.28	3.34	-0.16	5.68	29.57
9	С	G-T	-0.06	-0.02	-0.03	0.13	-6,92	0.43	+0.05	0.04	3.19	-0.27	2.13	32.00
10	G	T-A	-0.06	-0.02	-0.03	0.13	-6.90	0.43	-0.00	0.24	3.17	0.00	10.30	28.82
1 10	9	T-C	0.03	-0.02	-0.02	-1.43	-7.78	0.20	+0.05	0.22	3.23	0.30	3.71	32.99
11	A	T-G	0.03	-0.02	-0.02	-1.42	-7.77	0.20	-0.02	0.25	3.12	-0.21	9.19	27.85
12	A	Т-Т	-0.06	-0.02	-0.03	0.11	-6.90	0.43	+0.06	-0.03	3.17	+1.50	1.31	31.92
14	A													

Parameter File

	6197	base_pair:	S									
0	***local base-pair & step parameters***											
	Shear	Stretch	Stagger	Buckle	Prop-Tw	Opening	Shift	Slide	Rise	Tilt	Roll	Twist
G-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A-T	-0.06	-0.02	-0.03	0.13	-6.91	0.42	-0.05	0.22	3.23	-0.30	3.72	32.99
T - A	-0.06	-0.02	-0.03	0.13	-6.91	0.43	-0.00	-0.08	3.12	0.00	2.01	30.18
C-G	0.03	-0.02	-0.02	-1.43	-7.78	0.20	0.05	0.22	3.23	0.30	3.71	32.99
C-G	0.03	-0.02	-0.02	-1.44	-7.79	0.20	0.15	-0.28	3.34	0.15	5.68	29.57
G-C	0.03	-0.02	-0.02	-1.42	-7.77	0.20	0.00	0.30	3.07	0.00	8.07	27.24
T - A	-0.06	-0.02	-0.03	0.13	-6.92	0.43	0.05	0.04	3.19	-0.27	2.13	32.00
C-G	0.03	-0.02	-0.02	-1.43	-7.78	0.20	0.05	0.22	3.23	0.30	3.71	32.99
G-C	0.03	-0.02	-0.02	-1.42	-7.77	0.20	0.00	0.30	3.07	0.00	8.07	27.24

El Hassan's Algorithm

- Process used to convert a .par file to a .xyz file (par -> xyz)
- Involves a series of rotation matrix multiplications.

$$R_{X}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & Cos(\theta) & -Sin(\theta) \\ 0 & Sin(\theta) & Cos(\theta) \end{bmatrix}$$
$$R_{Y}(\theta) = \begin{bmatrix} Cos(\theta) & 0 & -Sin(\theta) \\ 0 & 1 & 0 \\ Sin(\theta) & 0 & Cos(\theta) \end{bmatrix}$$
$$R_{Z}(\theta) = \begin{bmatrix} Cos(\theta) & Sin(\theta) & 0 \\ -Sin(\theta) & Cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{i+1} = \left[\mathbf{R}_z \left(\frac{\Omega}{2} - \phi \right) \mathbf{R}_y(\Gamma) \mathbf{R}_z \left(\frac{\Omega}{2} + \phi \right) \right] \mathbf{T}_i \qquad (9)$$

$$\mathbf{T}_{mst} = \left[\mathbf{R}_z \left(\frac{\Omega}{2} - \phi \right) \mathbf{R}_y \left(\frac{\Gamma}{2} \right) \mathbf{R}_z (\phi) \right] \mathbf{T}_i \qquad (10)$$

$$\mathbf{r}_{i+1}^{o} = \mathbf{r}_{i}^{o} + D_{x}\mathbf{x}_{mst} + D_{y}\mathbf{y}_{mst} + D_{z}\mathbf{z}_{mst}$$
(11)

XYZ FILE

COMMENT	TcB par2xyz		
CA	0.00000	0.00000	0.00000
H1	1.00000	0.00000	0.00000
H2	0.00000	1.00000	0.00000
HЗ	0.00000	0.00000	1.00000
CA	-0.01227	0.23463	3.22933
H1	0.82456	0.77837	3.16564
H2	-0.55635	1.07355	3.24274
HЗ	0.04846	0.25807	4.22721

CA-Central Atom Coordinates
 H-Director / Pointer for an axis

Efficiency of par -> xyz

 One of the most time consuming process of the program

 Since test files are up to millions of base pairs long, process must be optimized.

 Application runs on a webpage, quickness is a necessity.

Current Running Times

Running Time Comparison of New and Old Code									
	C	++	FORTRAN						
# of Base Pairs	Running Time (s)	CPU Usage (%)	Running Time (s)	CPU Usage (%)					
1000000	68.3	74.5	25.69						
100000	7.3	74.8	2.54	99.6					
10000	0.83	66.2	0.25	100					
1000	0.09	55.5	0.03	66.6					
100	0.02	50	0.003	0					
10	0	0	0	0					

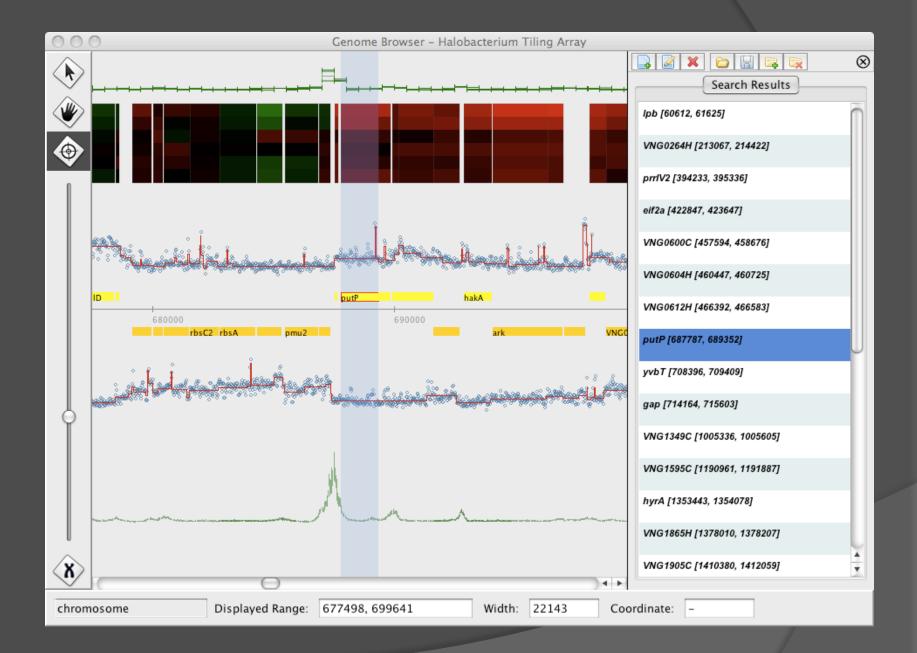
New code is slower.....File I/O issues C++ code was also writing files at the same time

Ways to Improve Running Time

- Introduce new data structure to hold all .par data and prevent opening and closing files many times.
- Execute El Hassan's Algorithm while expanding matrices beforehand so that multiple matrix multiplications are not needed.

Ways to Improve Running Time (2)

 We can parameterize the rotations using unit quaternions.


 Quaternion algebra is especially practical for rotation calculations, very likely to increase efficiency.

Future Plans: The Big Picture

 Integration with a Genome Browser.
 This allows a user to input a sequence directly from a DNA database.

Also saves calculation time, as the genome browser can tell exactly where nucleosomes should be placed.

More intuitive and aesthetically pleasing user interface.

References

- El Hassan, M.A. and Calladine C.R., 1995, The Assessment of the Geometry of Dinucleotide Steps in Double-Helical DNA; a New Local Calculation Scheme, *J. Mol. Biol.*, Vol. 251, p. 648-664
- Bishop, T.C. and Stolz, R.C., 2010, ICM Web: the interactive chromatin modeling web server, *Nucleic Acids Research*, Vol. 38, Web Server Issue. DOI: 10.1093/nar/gkq496
- http://ghr.nlm.nih.gov/handbook/illustrations/ dnastructure.jpg
- http://gaggle.systemsbiology.net/docs/geese/ genomebrowser/genome_browser.png