Investigations of Rutile-type RuO₂, SnO₂, MnO₂ as potential Lithium-Ion Battery Anode Materials

Cheryl Salmonson

Louisiana Tech University University of Wisconsin – Madison University of Wisconsin – Eau Claire

Motivation for this Work

Battery Types

Figure 1*: Revenue contributions by different battery chemistries

3

Introduction for this Work

- Highly reactive with much higher energy and power density.
- *No* "memory effect" as in NiCd
- Design flexibility, and safest in use

• Green

Desired Improvements

- Produce more energy
- Last longer
- Charge faster
- Reduce cost

- Best metal oxide
- Voltage
- Capacity
- Volume

Methods

- VASP (Vienna Ab initio Simulation Package) - Density Functional Theory (DFT).
- Perdew-Burke-Ernzerhof (PBE)⁴ functional
- Projector Augmented Wave (PAW) method.
- Allowed the ionic coordinates, cell shape, and volume of the structures to relax
- A "working cell" of (MO₂)₈. M=metal; Ru, Sn, Mn

K-POINTS Convergence

- 7 X 7 X 7 k-points
- Time vs. Accuracy
- Working cell

Energy vs. Time

K-POINTS Convergence

- 7 X 7 X 7 k-points
- Time vs. Accuracy
- Working cell

Energy vs. Time

Nernst Equation

Equation 1. Nernst Relationship for voltage calculation:

$$E(\mathbf{V}) = \frac{\left[G_{(MO_2)_n}^{\circ} + G_{Li}^{\circ} - G_{(MO_2)_n Li}^{\circ}\right] \mathbf{J} \operatorname{mol}^{-1}}{xF(C \operatorname{mol}^{-1})}$$

Measures the voltage for adding Li to a metal oxide cluster

Optimized Structures of (RuO₂)₈

(a) First lithiation

Ruthenium (Ru) - dark green

- Minimal distortion 1:1
- Significant distortion 2:1
- Phase change 3:1

Oxygen (O) – red

Lithium (Li) - purple

- Phase change allowed more Li intercalation
- Phase change is irreversible

Experimental Discharge Curves

- First plateau in the first discharge represents intercalation of Li into original rutile structure
- Second discharge interpreted as intercalation of Li into the new tetragonal structure resulting after phase change
- Agreement between experimental and calculated curves

Optimized Structures of $(SnO_2)_8$ and $(MnO_2)_8$

16Li

24Li

OLi

32Li

(b) MnO₂

Tin (Sn) – yellow Oxygen (O) – red Manganese (Mn) – aqua Lithium (Li) - purple

- Further work
- Same rutile structure as Ru

Discharge curves for MnO₂ and

- MnO₂ does not seem promising
- Capacity drops below 0.5V at 16 Li for Mn
- SnO₂ does seem promising
- Has more capacity before dropping below 0.5v for SnO₂

Conclusion

- RuO2 seems very promising but expensive
- Phase change occurred during first cycle
- Phase change allowed more capacity and is irreversible
- Researching other to find better materials

Acknowledgements

- Dr. Ayorinde Hassan
- Dr. Ramu Ramachandran
- Dr. Collin Wick
- Mrs. Holly Payton
- Ms. Alicia Boudreaux
- National Science Foundation: EPS 1003897 EPS 1006891

Q & A

17