# Microwave heating of biological tissues

Presentation by John Bordelon



#### What Are Microwaves?

- Microwaves are electromagnetic waves with wavelengths between 3mm (100GHz) and 30cm (1GHz).
- Maxwell's equations govern the propagation of electromagnetic waves through space.
- The only material parameters of interest are the electrical permittivity,  $\epsilon$ , and the magnetic permeability,  $\mu$ .

#### Microwaves as cancer treatment

- The idea behind microwave cancer therapy is that a cell which is heated 8K above body temperature will undergo hyperthermia, killing it.
- Because cancer cells and healthy tissue have differing permittivities, by carefully choosing a pulse there is the possibility of killing cancerous tissue while sparing the nearby healthy tissue.

# Microwaves through media

• As a microwave travels through a medium, material properties influence the displacement field,  $\overrightarrow{D}$ , and in turn create the electric field,  $\overrightarrow{E}$ .

- $\vec{D} = \varepsilon \vec{E}$
- If  $\epsilon$  is a function of frequency, i.e.  $\epsilon(\omega)$ , then the material is dispersive. All materials are dispersive, but some more than others.

# Dispersion problem

The high dispersivity of biological tissues
poses problems for simulating pulses. This is
because a pulse contains a continuous spread
in frequencies.



#### Our solution

- Linking the frequency dependence of the permittivity into the time is not supported.
- Our solution to this problem, given time limitations, is to use a single frequency rather than a pulse. This allows a single complex valued  $\epsilon$  to replace the frequency dependent form.

### How does microwave heating work?

- In mediums which are heated by microwaves (not all are) there exist dipoles. As an electromagnetic wave passes near these dipoles, they will oscillate because of the electric/magnetic repulsion/attraction.
- This movement causes friction which converts electromagnetic energy into heat.
- If the material is conductive, there will also be ohmic losses from induced currents.

## **Our COMSOL Simulation**

First, we solved the stationary response in COMSOL for a single frequency.

This represents the steady-state response after all initial transients have died off.

In doing so we assume the initial transients are negligible.

This is a reasonable assumption because of the long running time compared to the period of the wave.



## Next steps

- COMSOL automatically solves the steady state power dissipation density.
- This power density is stored and used in the next time domain study. freq1(1)=1.1e10 Surface: Total power dissipation density (W/m^3) MULTI-



#### Time domain

- The next step is to run a time dependent study where the saved power dissipation density is set as a heat source.
- This allows us to moniter how quickly and in what fashion the tissues would heat up.





#### Results

- We tested two frequencies, 4GHz and 11GHz.
- At 11GHz, heating was not even.
- Because of this we can the simulation much longer than needed, and performed a surface integration divided by the area to calculate the average temperature vs. time.
- We then found when the average temperature was what we wanted and turned the heat source off at that time.
- We then waited until the heat had evenly spread out.

## 4GHz Example:

Here are the pictures for white matter at 4GHz:



 As you can see, the power density causes even heating. There is no needed additional time for the heat to spread out.

## 11GHz Example

 On the contrary, at 11GHz, heating was very localized and needed time to spread out.



## Charts

The time needed to reach an average temperature of 301.15K (*t0*) and for the heat to evenly distribute (*teven*) vs. tissue type and frequency. At 4GHz there was no extra time needed for the heat to evenly distribute (*teven=t0*).

| Table 2 |        |            |       |            |       |            |       |            |       |            |       |              |       |             |  |
|---------|--------|------------|-------|------------|-------|------------|-------|------------|-------|------------|-------|--------------|-------|-------------|--|
|         | Muscle | Muscle     |       | Heart      |       | Kidney     |       | Liver      |       | Skin       |       | White Matter |       | Grey Matter |  |
|         | $t_0$  | $t_{even}$ | $t_0$ | $t_{even}$ | $t_0$ | $t_{even}$ | $t_0$ | $t_{even}$ | $t_0$ | $t_{even}$ | $t_0$ | $t_{even}$   | $t_0$ | $t_{even}$  |  |
| 4GHz    | 120    |            | 127.5 |            | 140   |            | 130   |            | 220   |            | 230   |              | 140   |             |  |
| 11GHz   | 18.56  | 34         | 15.06 | 45         | 16.24 | 40         | 16.24 | 45         | 14    | 60         | 11.1  | 41           | 16.2  | 45          |  |

## Conclusions and next steps

- Our geometry of a 2.5mm radius cell could be modified to any shape (and to 3-d) easily to simulate a more practical situation. In addition to changing the size and dimensions, COMSOL can easily simulate a more accurate biological heating model, which accepts parameters such as the blood perfusion rate, etc, to perhaps study the heating of a tumor surrounded by tissue.
- Because the permittivities of the tumor and the surrounding tissue are different, it could be possible to find a frequency which would heat the tumor more than nearby healthy tissue.

# Acknowledgements

- I would like to thank NSF for funding this research opportunity.
- I would also like to thank Dr. Dai, Dr. Genov, and Dr. Khaliq for guidance in this research, and Gustavo Gutierrez for help compiling the data and running simulations.

#### References

- 1. Su, Shengjun. *Numerical Simulation of Nanopulse Penetration of Biological Matter Using the Z-transform*. Diss. LA Tech, 2005. Print.
- 2. Pethig, Ronald. *Dielectric Properties of Biological Materials*. School of Electronic Engineering Science, University College of North Wales. Web. 21 July 2011.
- 3. Xu Dening; Liu Liping; Jiang Zhiyau; , "Measurement of Dielectic Properties of Biological Substances Using Improved Open-Ended Coaxial Line Resonator Method," *Microwave Symposium Digest*, 1987 IEEE MTT-S International , vol.1, no., pp.251-254, May 9 1975-June 11 1987
- 4. PhD Gabriel, Camelia and MSc. Gabriel, Sami. *Compilation of the Dielectric Properties of Body Tissue at RF and Microwave Frequencies*. King's College London, June 1996. Web. 21 July 201