

Abstract

This poster presents the findings of ab-initio calculations of electronic and structural properties of cubic crystalline sodium oxide (Na₂O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO) formalism. Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). Our results include predicted values for: 1) The electronic band structure and associated band gaps, 2) The total and partial density of states (DOS and pDos), **3)** The equilibrium lattice constant of Na₂O, and 4) The bulk modulus.

Introduction and Method

Despite its potential for applications, Na₂O has not attracted much attention for experimental studies after 1940. The room temperature lattice constant and band gap have been measured in 1934^[1] and 1940^[2], respectively. A handful of calculations, mainly using DFT potentials, reported band gaps over a range of 1.8 to 4.9 eV^[3] Previous success of our computational method motivated us to attempt to resolve the discrepancy between previous theoretical findings. Several past predictions with the BZW-EF method have been confirmed by experimental measurements, i.e., for cubic Si₃N₄ and InN.^[4]

Our method utilizes a local density approximation (LDA) potential and the The linear combination of Gaussian orbitals (LCGO). These two features of our work are similar to those of previous calculations. The distinctive feature of our calculations is our implementation of the BZW-EF method that adheres the conditions of validity of DFT. Calculations have to (1) keep the total number of particle constant, (2) attain the absolute minima of the occupied energies, and (3) avoid excessively large basis sets that destroy the physical content of the lowest unoccupied energies. Successively augmented basis sets are used by the method in calculations of electronic energies up to the attainment of the absolute minima of the occupied energies. ^[4]

Results

Table 1 shows the various basis sets for which the band structure of Na₂O was calculated, with a room temperature lattice constant of 5.56 Å^[1]. The direct band gap values at the Γ point are shown in the last column, in eV. The absolute minima of the occupied energies are reached with Calculation 2.

Calc. #	Na ¹⁺ Orbitals	O ²⁻ Orbitals	# of Functionals	Г-Г Band Gap (eV)
1	2s ² 2p ⁶ 3s ⁰	2s ² 2p ⁶	28	2.38
2	2s ² 2p ⁶ 3s ⁰ 3p ⁰	2s ² 2p ⁶	40	2.22
3	2s² 2p ⁶ 3s ⁰ 3p ⁰ 4p ⁰	2s ² 2p ⁶	52	2.24
4	2s ² 2p ⁶ 3s ⁰ 3p ⁰ 4p ⁰ 4s ⁰	2s ² 2p ⁶	56	2.24

Density Functional Theory, Self-Consistent Prediction of Electronic Properties of Sodium Oxide (Na₂O)

Daniel Polin¹, Joshua Ziegler², Yuriy, Malozovsky³, and Diola Bagayoko³

¹New York University, New York, NY ² Case Western Reserve University, Cleveland, OH ³Southern University and A&M College, Baton Rouge, LA

Results Cont.

Calc. #3 and #4 shared the same occupied energies as Calc. #2 which tells us that Calc. #2 is the first basis set for which an absolute minimum occupied energy is reached. We therefore call the basis set for Calc. #2 the "optimal basis" set. We use this optimal basis set to calculate all other properties of $Na_2O.$

Figure 4 below shows the density of states of Na₂O calculated using the bands from Calc. #2.

From these figures we can see that the lower valence bands are due to the Oxygen-S and the upper valence band is from the Oxygen-P. The higher energy unoccupied bands are due to a hybridization of Sodium S and P.

NEW YORK UNIVERSITY

Figure 3 below shows the band structure from Calc. #2 (solid line) and #3 (dotted). The occupied energies for the two calculations are notably the same.

Figure 5 below shows the partial density of states calculated using the bands from Calc. #2.

^[2]W. Rauch, *Z. Phys.* 116, 652 (1940) ^[3]B. Baumeier, P. Krüger, J. Pollmann, G. Vajenine, *Phys. Rev. B* 78, 125111 (2008) ^[4]D. Bagayoko, *AIP Advances* 4, 127104 (2014)

Results Cont.

Figure 6 to the left shows the plot of the total energy versus the lattice constant.

From this plot we determined the lattice constant corresponding to the minimum of the total energy. This is the equilibrium lattice constant for Na₂O, equal to, 5.55 Å with an estimated uncertainty of ±0.01 Å.

The curvature around the minimum of the total energy was used to calculate

Conclusions

We calculated a direct band gap of 2.22 eV for Na₂O. This result is larger than but qualitatively similar to some other LDA predictions which is expected as many other LDA calculations tend to underestimate band gaps. There is only experimental value is 4.41eV^[2]. Additional experimental data would be useful in

We determined the density of states and partial density of states for Na_2O .

We determined an equilibrium lattice constant of 5.55Å. This is slightly

We calculated a bulk modulus for Na₂O of 61.67 GPa. This is a value similar to several other theoretical findings. No experimental value could be found at

We expect future experimental measurements to confirm our results not only for the band structure and gap, but also the densities or states and the

Acknowledgments This work was funded by the National Science Foundation and the Louisiana Board of Regents, through LASIGMA [Award Nos. EPS-1003897,

References ^[1]E. Zintl, A. Harder, B. Dauth, Z. *Elektrochem. Angew. Phys. Chem.* 40,