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Introduction

In classical mechanics, one can illustrate the movement of one or more particles by
using their position and velocity as functions of time and from there determine the
location at any time. In quantum mechanics the wave function gives a probability of
the particles’ location in any given region in space at any given time. Currently, my
wave function is derived from a Schrodinger equation with a simple harmonic
potential. Since the equation is time-dependent and nonlinear, it is a nontrivial partial
differential equation. Because the equation is nontrivial, it requires the use of
numerical methods which need to be programmed.

Furthermore, HPX, a run time system for C++, is used to run the program more
efficiently. HPX reduces the effects of SLOW (starvation, latencies, overheads,
waiting) which are four main factors that slow down the systems while performing
the parallel computation. Moreover, the code will be modified to simulate a Bose
Einstein Condensate (BEC), which is describe by a Schrodinger equation that relates
the time derivative of the wave function with the Hamiltonian operator, as well.

Background

Bosons are particles that do not obey the Pauli Exclusion Principle. Instead Bosons
follow rules which assert that two indistinguishable Boson particles can occupy the
same energy level. Einstein predicted that cooling a Bosonic system to a very low
temperature would cause a large fraction of the particles in the system to converge
(condense) into the ground state (lowest energy level). This phenomenon is now
known as the Bose-Einstein condensation (BEC). At this state, all particles share the
same phase and behave coherently.

On June 5, 1995, the first ever BEC was achieved by Eric Cornell and Carl Wieman at the
JILA lab. Later, Wolfgang Ketterle, a researcher at MIT, studied and demonstrated the
important properties of BEC. The work earned them the 2001 Nobel Prize in Physics.
The graph below illustrates the BEC.
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Image Credit: Quantum Physics; Bose Einstein condensate, National Institute of Standards and Technology, 95PHY001, 1995
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High Performance ParalleX (HPX)

HPX is a runtime system implementation of the ParalleX execution model. This
runtime system allows programmers to counter problems they face that slow down
their parallel implementations. Four fundamental factors of those problems are
SLOW: Starvation, Latencies, Overhead, and Waiting for Contention resolution.
Starvation occurs when there is not enough computation for the program to
maintain high performance and utilize all resources. Latencies cause stoppage in the
code due to the waiting for information to be received. Overhead is the work
required to manage parallel actions. Waiting for Contention resolution is the time
delays for different parts of the program to get an overshared information. HPX
mitigates SLOW by using tools such as future, dataflow, action. A future is a facility
that carries the result of a computation. It acts as a representative for the result that
is yet to be computed and suspends any threads that request the result until it
becomes available. Dataflow is a local control object that is triggered when the
values it depends on become available. One way to use dataflow is to use a future as
its argument so that when the future’s result becomes available, dataflow is
triggered. An action is a function wrapper which will then allow HPX to send this
packet to any node.

Method

The probability of finding a particle at any given point in time is given by the wave
function, W(x,t), whose result is found by solving the Schrodinger equation:
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V is the potential energy, which in this case is :

Vix)=1/2 kxT2

In order to solve this equation, | use the Crank-Nicolson numerical method since it is
fairly stable and accurate.
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This method is simply the average of the explicit and implicit Euler methods with n
being the time coordinate, j being the spatial coordinate, and H being the Hamiltonian
operator:

H=-1/2 dT12 /oxT.

This reduces to with a set of m equations with m unknowns.

Results
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Above are the graphs at three different times with the uppermost
being the earliest time and the bottom being the latest time. The

graphs are showing data from the real part of the calculated wave
function.
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Conclusions

Through the data, we have shown that the code is fully functional
and capable of simulating a system of particles within a harmonic

potgnjigk. Thisis a step toward the goal of simulating BEC with
—|-diff et c'jﬁtfr r random potentials. For future work, we are
going taexte

the code by adding in different random potentials.
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