

Abstract

The overall goal of this research was to discover new superconducting materials from intercalation of polymers into layered compounds with a Van der Waals gap. Specifically, conducting polymers, polyaniline (Pan), polythiophene (PT), and polypyrrole (Ppy) were used in order to manipulate their conjugated bonds to transfer electric charges efficiently.

The layered compounds have attracted more attention because of their interesting physical properties induced by dimensionality; such as superconductivity, quantum criticality, etc. The existence of a Van der Waals gap in such kind of compounds makes them good candidates for an intercalation study, during which the crystal structure is slightly tuned and the properties are expected to change correspondingly.

In this experiment, monomers of conducting polymers were intercalated into layered materials FeSe and FeTe, then polymerized through in situ oxidation using ammonium persulfate. Our results indicate the polymer intercalation changes crystal structure and physical properties.

Introduction

Recent developments in the field of inorganic superconducting layered materials coupled with a shift in attention to organic compounds that display electrochemical and electrochromic properties has led to an increased awareness of possibilities for hybrid organic-inorganic materials. (1, 2) As a result of this rising interest and the unexplored nature the field, we are seeing a variety of novel techniques being developed to synthesize these hybrid compounds and ascertain their physical and electrical properties. While these nanocomposites have a wide range of applications, for example, in non-linear optics, as nanowires, sensors, and light-weight reinforced structures, the goal of this project is to investigate the potential of the composites as plastic superconductors. (2) Because the resultant hybrid materials derive many characteristics from their parent compounds, such as critical temperature and quantum criticality, leads to a selection of components that are inherently superconducting and electroactive at some level.

Thus, the process is a fundamentally enhancing one. There remains, however, a possibility that properties foreign to the parents may be discovered. The hope is that any new properties would result in bulk superconductivity, especially at increased temperatures relative to the host inorganic compound. (1,2) Four methods in particular have been employed to intercalate polymers into target samples: initially inserting monomers in between layers followed by respective polymerization, by *in situ* intercalative oxidation, direct polymer injection, and by encapsulate precipitation. (3) This presentation reports the preparation of polyaniline (Pan) and polythiophene (PT), the methodology of intercalation, namely in situ oxidation, and the properties of the resultant materials with FeSe as the inorganic host. Property characterization was conducted by X-ray diffraction and SQUID analysis.

Methods – Intercalation via Potassium

This method of first intercalating potassium into the layered compound is carried out through a solid state reaction.

- 1) Add potassium, iron, tellurium/selenium in a 0.8 : 2 : 2 molar ratio in a Pyrex tube
- 2) Heat the mixture to 950°C over a 24 hour period
- 3) Cool the compound slowly
- 4) For the rest of the procedure, reference steps 5 15 in the lithium intercalation method

Polymer Intercalation into Layered Materials

Michael Soforenko & John Coody Physics Department, Tulane University, New Orleans, LA 70118 Email: msoforen@tulane.edu & coody.j@gmail.com

Conclusion and Future Work

deduced that a chemical intercalation did take place •Proved by the shift in the intensity peaks on the scans host materials upon intercalation oxygen in the atmosphere inhibits the polymerization reaction of polymer intercalated into the layered compound

References

- Research Bulletin, **2009**, 44, 719.
- 2) Hui-Lien Tsai, Jon L. Schindler, Carl R. Kannewurf, Mercouri G. Kanatzidis. Chem. Mater. **1997**, *9*, 875.

Acknowledgements

guidance this research would not have been possible. summer

progress of our research throughout the REU.

- •Based on the pre and post XRD scans of the intercalated compounds, it can be
- •The magnetometer measurements point to a change in magnetic properties of the
- •Future polymer intercalations should take place in de-gassed H₂O because the •More efficient methods to separate the solvents from the product must be developed
- •The degree of lithiation must still be determined as well as the stoichiometric amount

1) Bi-Zhou Lin, Cong Ding, Bai-Huan Xu, Zhi-Jian Chen, Yi-Lin Chen. *Materials*

3) Lei Wang and Mercouri G. Kanatzidis. *Chem. Mater.* **2001**, *13*, 3717.

- •A special thanks to our mentor this summer Jin Hu. Without your help and •LA-Sigma for providing us this opportunity to participate in graduate research for a
- •Dr. Mao for allowing us to join his group this summer and helping direct the