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Abstract: Following an introduction, we briefly recall the derivation of density functional 

theory (DFT) and of its local density approximation (LDA). It follows from this derivation that 

eigenvalues resulting from self consistent DFT calculations utilizing a single input basis set do 

not necessarily have much physical content. We present necessary conditions for their greatest 

physical content. We subsequently note new results from self consistent DFT calculations that 

agree very well with corresponding experimental ones. The latter calculations utilized the 

Bagayoko, Zhao, and Williams (BZW) method as enhanced by Ekuma and Franklin (BZW-EF). 

We show that the excellent agreement is due to the inherent and accurate physical content of 

results from self consistent BZW-EF calculations that strictly adhere to intrinsic requirements 

(conditions) germane to DFT. We describe the mathematical artifact that affects unoccupied 

energies when basis sets much larger than the DFT-optimal one are utilized to study materials 

with energy or band gaps.  
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1.  Introduction  

 

In 1964, Hohenberg and Kohn introduced density functional theory (DFT) [1] whose local density approximation 

(LDA) [2] was constructed by Kohn and sham in 1965. Despite the wide spread utilization of DFT for the 

theoretical studies of semiconductors and insulators, among other materials, the literature reports shortfalls that 

seriously limit the usefulness of DFT for a highly accurate description of electronic and related properties of 

materials, in general, and for ab-initio prediction of these properties and of novel materials, in particular. As the 

dissertation advisor [3] and grand-advisor [4] of Bagayoko told him multiple times: “With accurate electronic 

energies and related wave functions, it is possible to compute most properties of materials.” The critical 

importance of obtaining accurate energies and related wave functions stems from the verified content of this 

quote.  

  

Hence, the above reported shortfalls or limitations of DFT and LDA should be resolved. Before making any 

attempt in that direction, we should note the tremendously numerous reports of limitations of DFT and LDA, 

particularly in Physical Review B, emanate from calculations that did not search for and verifiably obtain the 

21



Proceedings of Louisiana EPSCoR RII LA-SiGMA 2013 Symposium 

 

 
 

minima of the occupied energies. In general, the differences between LDA calculated band gaps and 

corresponding, measured ones, are explained in terms of self interaction errors, for atoms and localized states in 

solids, derivative discontinuities of the exchange correlation energy, and missing non-local effects.  A leap of faith 

has been made in the literature: It consists of ascribing differences between single basis set calculation results 

and corresponding experimental ones to intrinsic features (or shortfalls) of DFT and LDA, even though the 

disagreement between several, calculated results should have hinted otherwise.  

 

The above situation is further compounded by the growing number of schemes, including very sophisticated ones, 

aimed at resolving the perceived limitations of DFT and LDA. Indeed, most of these new approaches entail 

adjustable parameters that change with the material under study. Consequently, the community seems to be 

drifting away from the search for ab-initio or first principle remedies to the reported limitations. Such remedies 

will usher in an era not just of highly accurate calculations of properties of materials, but also of theoretical 

capabilities to predict these properties and novel materials.   We recall below the derivation of DFT and LDA as it 

sheds light on likely sources of disagreement between single basis set computational results and experimental 

ones without invoking any limitations of DFT or LDA.  

 

2. Essentials of the Derivation of DFT and LDA 

The Hohenberg-Kohn Theorem.  The Hohenberg-Kohn theorem states that the external potential to which a 

collection of electrons is subjected is a unique functional of the electron density, except for a possible, additive 

constant to that potential. Considering an electron system subject to an external potential, the theorem means that 

unless two external potentials are different only by a constant, they cannot individually lead to the same electron 

density for the system under study. The Hamiltonian comprises kinetic, electron-electron interaction, and the 

applicable, external potential terms. The first two terms are known to be universal functional of the electron 

density. Hence, the Hohenberg-Kohn theorem means that the entire Hamiltonian that determines ground state 

properties of the electron system, including its ground state energy, is a unique functional of the electron density.  

The Variational Principle of DFT. This variational principle simply states that, for a given system of electrons 

of density n, the energy functional E[n] = H[n] = T[n] + V[n] + U[n], where T, V, and U stand for the kinetic, the 

external potential, and the electron-electron interaction contributions to the energy, respectively, is an upper 

bound to the true ground state energy E0[n0] whenever the density n is constructed using a guessed many particle 

wave function  that otherwise satisfies applicable constraints. For n = n0, E[n] = E0[n0]. It is particularly pertinent 

for us to quote from Hohenberg and Kohn [1]:  

  “It is well known that for a system of N particles, the energy functional of 
'  

             Ev[
' ] = (

' ,V
' ) + (

' ,(T+U) 
' ) has a minimum at the ‘correct’ ground state , relative to 

 arbitrary variations of 
' in which the total  number of particles is kept constant.”  

The above variational principle clearly shows that single basis set calculations should not be expected to lead to 

the ground state properties if and when one employs density functional theory (DFT).   
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3.          Density Functional Theory Revisited: Two Necessary Conditions for Greatest Physical Content  

It is clear from the above principle that the physical content of DFT or LDA results can be very limited if the 

above variational principle is not heeded. A single trial basis set calculation, however self consistent it may be, 

cannot verifiably reach the minima of the occupied energies and of Ev (
' ), that is E ( ). Further, when one 

performs calculations with several basis sets, if they are not such that each basis set is embedded in the one 

following it, up to the optimal one [5] that yields the minima of the occupied energies and of Ev[
' ], as identified 

by the fact that no larger basis set that contains it leads to any lower, occupied eigenvalues or lower Ev[
' ], one 

should not expect to have the full DFT description of the ground state of the system. This embedding of basis sets, 

beginning with the smallest one, that should be no smaller than the minimum basis set accounting for all the 

electrons in the system under study, is a necessary condition for DFT calculations expected to lead to the ground 

state of an electron system in a verifiable fashion. After all, there is an infinite number of possible .'  

The Second Necessary Condition – for Systems with Energy or Band Gaps. The Rayleigh theorem states that 

when the same eigenvalue equation is solved with two basis sets of dimension N and (N+1), such that the N 

functions of the first basis set are entirely included in the second of size (N+1), then the ordered eigenvalues, from 

the lowest to the highest, satisfy the relation for
N

i

N

i

)1( 
 .Ni   Upon an increase of the basis set, the 

charge density, the potential and the Hamiltonian change and so do the occupied energies and the energy 

functional Ev[
' ]. The latter two are generally lowered. The application of the Rayleigh theorem becomes 

necessary when two successive calculations lead to the same occupied energies and low, unoccupied energies 

(generally up to +10 eV).  For basis sets much larger than the optimal one, the above Rayleigh theorem leads to a 

continuing lowering of some unoccupied energies while the physics of the problem (H: occupied energies, etc.) is 

not affected. This mathematical artifact naturally translates itself into a decrease of energy gaps for discrete 

systems and band gaps for semiconductors and insulators. The decrease of calculated electron effective masses is 

due the lowering of conduction band minima.   

4. Excellent Agreement between Recent DFT/LDA BZW-EF Results and Experimental Ones 

The Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin (BZW-EF), strictly adheres to 

the mathematical and physical conditions that guarantee the greatest, physical content for the results from DFT 

and LDA calculations. The initial BZW method made predictions that have been confirmed by experiment [6]. 

The reader is urged to consult the works of Franklin et al. [5] and Ekuma et al. [6] for a comprehensive 

description of the BZW-EF method. As explained in these sources, the EF enhancement consists of not 

necessarily following the s, p, d, and f order in adding orbitals to the basis set. It rests on the counter-intuitive fact 

that polarization has primacy over spherical symmetry – as far as valence electrons are concerned.  Some cases of 

minor underestimations of band gaps by the BZW method, up to 0.3 eV, have been removed in BZW-EF 

calculations. Illustrative, recent results, in excellent agreement with experiment, are in the table below.   
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 Materials LDA/GGA BZW-EF 

Band Gaps in eV 

Experiment Materials   LDA/GGA BZW-EF 

Band Gaps in eV 

Experiment 

w-ZnO
5
 3.40 eV (at Γ) 3.44 eV Ge

6 

(Diamond 

structure) 

0.65 eV (Γ to L) 

GGA
7
 0.64 eV (Γ to 

L) LDA 

0.66-0.70 eV (Γ-L) 

zb-AlP 2.56 eV (Γ to X) 2.45 eV Γ-X zb-GaP 2.14 e V (Γ to X) 2.26 eV (Γ-X) 

zb-ZnS 3.725 eV (at Γ) 3.723 eV at Γ zb-Li2S 3.538 eV (Γ-X) 3.542 eV (Γ-X) 

w-GaN 3.292= 3.3 eV (at Γ)  3.4 eV  at Γ w and zb stand for wurtzite and zinc blend structures 

 

5. Conclusion  

 

Results from density functional theory (DFT), including its ab-initio realizations as in the generalized gradient 

approximation (GGA) [7] and the local density approximation (LDA), have their greatest physical content when 

the pertinent calculations adhere strictly to the mathematical and physical conditions inherent to its derivation.  

Self consistent DFT BZW-EF calculations accurately describe and correctly predict properties of materials.  
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