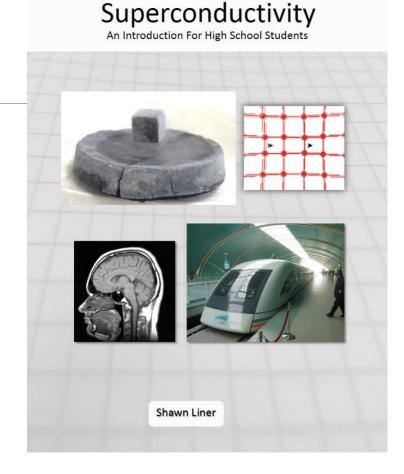


Superconductivity An Introductory E-book for High School Students

SHAWN LINER¹, JUANA MORENO², MARK JARRELL², PHILLIP SPRUNGER², DAVID YOUNG², LES BUTLER²


¹PARKVIEW BAPTIST SCHOOL , ²LSU

This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents

Goals

- Cheap We want it available to students and teachers
- Readily Available easy to get and cross platform
- High School Level our target audience
- Informative teach them something
- Motivational leave them with an interest in more
- Multimedia hold their attention better with demos
- Interactive allow them to touch and interact
- Editable allow it to be updated in the future
- Structured students have learned a healthy disrespect for websites

Proposed Solution

Publish an interactive multimedia e-book with Habitat on Inkling.com.

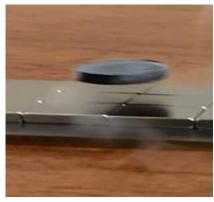
- •Inkling is available as a tablet app for apple, android and Microsoft products, as well as being available through web browser access.
- •Epub versions can also be created for use on non-multimedia reading devices.
- •The structure is maintained as a book and updates are pushed automatically.
- Inkling stores the files so they will be readily available and no new storage location has to be created.
- •The Book can be "sold" for free and the hosting is free, so it will be readily available.

Tasks

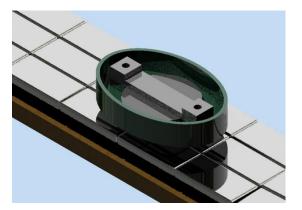
- Learn about superconductors
- Create an outline of the content. How much should we include to educate, but still keep them interested.
- Create Graphics, images, and videos.
 We wanted to own as much of the material as possible.
- Create and find demos to include in the material.

Topics for the Book

• <u>Electrical and Magnetic properties of superconductors</u> along with some review of basic electrical and magnetic properties



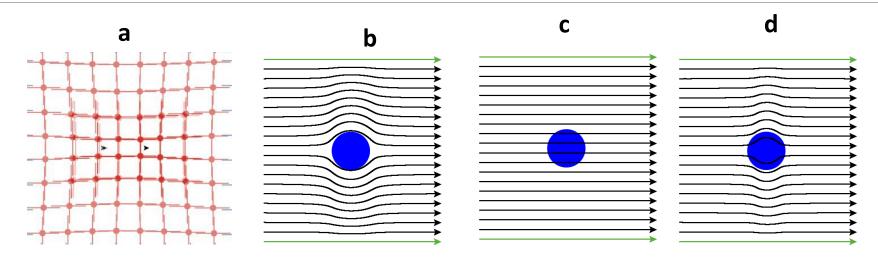
- <u>A survey of superconducting limitations.</u> This helps prevent misinformation and promotes curiosity about overcoming those limitations
- <u>Superconducting technology</u>. A survey of where the technology is currently being used. Students are amazed that their life is impacted by these topics now.
- <u>Theory.</u> Placed last to maintain interest. Students who are genuinely curious will continue to read without chasing off the casual interest before they learn something.


Demo Maglev Train Model

A track is created from rare earth magnets and a "train" is 3D printed to hold the superconductor and a reservoir of liquid nitrogen. This allows for a longer demo. Long term plan calls for an oval track to be built.

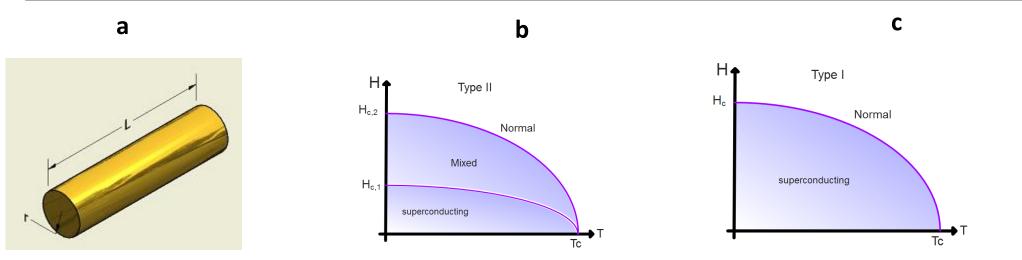
Levitating Disk on Track

Design of "train"



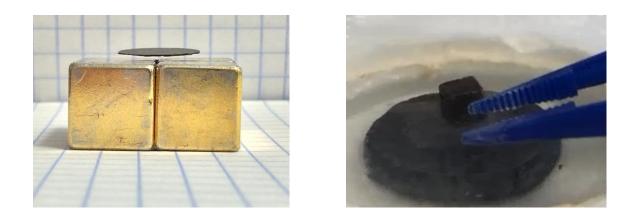
3D printed "Train"

Model of oval Track with "Train"


Graphics For Theory

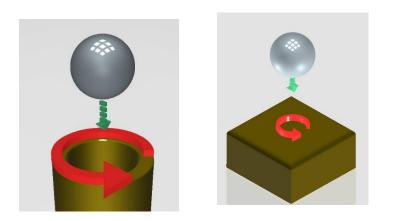
These four images were captured from simulations created in netlogo (a turtle based programing language.)

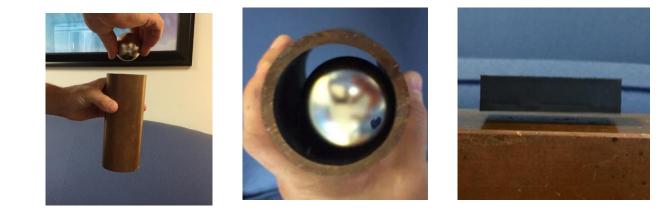
- a) Two arrows represent electrons forming a Cooper Pair.
- b) A superconductor expelling magnetic flux.
- c) A non diamagnetic material allowing the
- d) A Superconductor in a pinning state.



a) A simple diagram of a wire created to discuss causes of resistanceb) Type II critical magnetic field as a function of temperature.c) Type I critical magnetic field as a function of temperature.

Demo Levitation

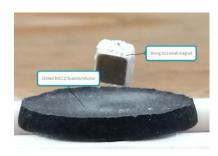

Video Demos are included of both a superconducting caused levitation and that of pyrolytic graphite. The latter was included to show that the property was not specific to superconductors.

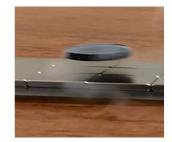


Freeze-frames of the two parts of a video demonstration. The left shows pyrolytic graphite levitating above strong magnets. The right shows the standard demo of a magnet levitating above a superconducting disk.

Demo Lenz Law

We included a demo of Lenz's law to help students understand levitation. The pictures include bubbles to explain the concept and the video includes a voice-over to help students see the important parts of the demo.

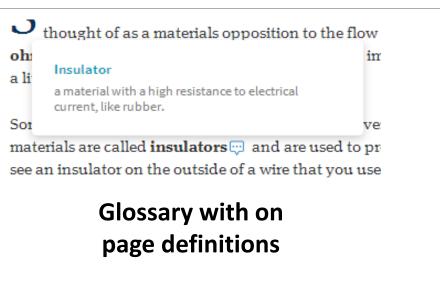



Illustrations created in Autodesk Inventor to show the current being created as the magnet falls. Freeze-frames of the two parts of a video demonstration. The spherical magnet is dropped through the copper pipe to show it falling slowly. Then a bar magnet is dropped onto a copper plate. It is visibly slowed by the induced magnetic field.

Clickable table of contents, with images.

Features of the Book

Pictures zoom and show clickable labels


VIDEO DEMO Maglev Demo Click the image above for a video demo of maglev model train. Shawn Liner

Full Screen "Video Demos"

Links to some interesting maglev information.

- Shanghai maglev Train http://www.smtdc.com/en/index.html
- A French group invents a hoverboard. http://www.supraconductivite.fr/en/index.php#samuser-magsurf
- Maglev 2000, Organization pushing for trans-continental maglev trains in North America http://www.maglev2000.com/
- Antipodes Middle School Robotics Team build project on maglev http://www.theonerobot.com/maglevresearch

Links to interesting information

Table of Contents ×
View by: Title File
- Forward
Cover
Acknowledgement
How to use this book
- Chapter 1: What is a Superconductor
Chapter Introduction
Figure 0: Meissner
Section 1.1: Electrical Characteristics
Figure 1.1: Wire
Figure 1.2: Graph of Linear

Questions