

MMTV and HMTV La-Sigma RET 2014

Rength of DNA

- DNA has 3 billion base pairs or 3 x 1079 bp
- The length of each base pair is roughly

1/3 of a nanometer or $1/3 \times 10 \uparrow -9 \text{ m/bp}$

Combine the two and you have:

 $(3 \times 10 ? 9) (1/3 \times 10 ? - 9) \approx 1$ meter in length of 1 copy of DNA

≈2 meters in length of entire DNA because you have 2 copies

• 2 meters is way bigger than the cell nucleosome so the DNA has to be folded and packaged. Proteins called histones do this by wrapping 147bp of DNA at a time into a giant molecular complex of proteins and DNA called nucleosomes.

DNA basics

- The genomes of higher organisms exist not just as long strands of DNA in the familiar Watson-Crick double helix, but rather they are associated with proteins, called histones, that fold and package the DNA such that it fits into the cell nucleus
- Out of that we are going to look at a 147 base pair sequence because there are roughly 147 base pairs wrapped around a histone core
- As a case study we will look at 6 nucleosomes (histone cores) in the Mouse Mammary Tumor Virus (MMTV)
- More specifically We will study the 1st nucleosome; nucleosome A

6 nucleosomes in the MMTV

Nucleosome A....

- Looking for it:
 - There are 4/147 OR about 10/88 possible sequences of a nucleosome
 - (That's 1 with 88 zeroes behind it)
 - Searching for Nucleosome A is like
 - Like searching for Waldo

- Has popped up in other research. The MMTV is a model system for hormone regulation.
- Dr. Bishop has personal history with it from graduate school... idea of ongoing research

Mutations in DNA

- Point mutation or change of one amino acid in the histone core can change the way DNA interacts with the histone core.
- DNA becomes more mobile because it does not attach as securely as it would without mutations.. .this changes the entire nature of the nucleosome

Study of MMTV

- MMTV Mouse Mammary Tumor Virus
- MMTV is a popular sequence of DNA that has been studied a lot over the years. Scientists now know how to use it for other purposes.
- Acts as a hormone regulated switch.
- In the presence of hormones, MMTV turns on gene expression. Scientists will put MMTV in front of whatever gene they are trying to express.
- Placing the hormones in a test tube with the MMTV cells ...

MMTV - Mouse Mammary Tumor Virus

In mice

they pass the virus on to their young through breast milk tumors tend to be benign

Causes Leukemia [1]

In humans

- Controversial to it's role with breast cancer
- Evidence to suggest that it plays a role in breast cancer
- Correlation between breast cancer and leukemia viral sequence has been found in both of these cancers
- Have found MMTV like DNA in breast cancer [2]
- Possible spread of the virus is transmission through our pets

http://www.nrdc.org/health/effects/bendrep.asp

The Endocrine System

http://www.nrdc.org/health/effects/bendrep.asp

The endocrine system: a short list

Pituitary and Hypothalamus:

Growth Hormones: cell size and number, bones
Thyroid Hormones: Temperature and metabolism

Oxytocin: contractions. Prolactin milk production

Antidiuretic: water balance and blood pressure

Gonadotropins: FSH & Luteinizing Hormone controls gonads, menstruation

Adrenal

Epinephrine & norepinephrine: flight and fight

Mineraloccorticoids: electrolyte balance

Glucocorticoids: immune response and inflammation

Thydroid:

Metabolism, growth & development, sexual maturity

Pancreas

Insulin and glucagon: blood glucose levels

Gonads:

Testosterone, Estrogen & Progesterone: secondary sexual characteristics

Activity Time!!

 We will write your name using reverse transcriptase to create a knitted bracelet representing DNA base pairs

How to video

Bibliography

- 1. Hehlmann, R; Kister, P; Willer, A; Simon, M; Schenk, M; Seifarth, W; Papakonstantinou, G; Saussele, S; Kolb, HJ; Ansari, H (April 1994). "Therapeutic progress and comparative aspects in chronic myelogenous leukemia (CML): interferon alpha vs. hydroxyurea vs. busulfan and expression of MMTV-related endogenous retroviral sequences in CML". Leukemia. 8 Suppl 1: S127–32. PMID 8152279
- 2. Faschinger, A; Rouault, F; Sollner, J; Lukas, A; Salmons, B; Günzburg, WH; Indik, S (February 2008).
 "Mouse mammary tumor virus integration site selection in human and mouse genomes". Journal of Virology 82 (3): 1360–7. doi: 10.1128/JVI.02098-07. PMC 2224419. PMID 18032509.
- 3. Wang, Y.; Melana, S.M.; Baker, B.; Bleiweiss, I.; Fernandez-Cobo, M.; Mandeli, J.F.; Holland, J.F.; Pogo, B.G.T. (1 January 2003). "High Prevalence of MMTV-like env Gene Sequences in Gestational Breast Cancer". *Medical Oncology* 20 (3): 233–236. doi: 10.1385/MO:20:3:233. PMID 14514972
- 4. Ham, J.; Thomson, A.; Needham, M.; Webb, P.; Parker, M. (1988).
 "Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus". Nucleic Acids Research 16(12): 5263–5276. doi: 10.1093/nar/16.12.5263. PMC 336766.PMID 2838812

Bibliography

- 5. Muñoz, B.; Bolander Jr, F. F. (1989). "Prolactin regulation of mouse mammary tumor virus (MMTV) expression in normal mouse mammary epithelium". *Molecular and cellular endocrinology* 62 (1): 23–29. PMID 2545485
- 6. http://autoimmune.com/HMTVGen.html
- 7. Stolz 2010
- 8. Reference Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller (2000), "A greedy algorithm for aligning DNA sequences", J Comput Biol 2000; 7(1-2):203-14.
- <u>9. Reference database indexing</u>Aleksandr Morgulis, George Coulouris, Yan Raytselis, Thomas L. Madden, Richa Agarwala, Alejandro A. Schäffer (2008), "Database Indexing for Production MegaBLAST Searches", Bioinformatics 24:1757-1764