Modeling of Diffusion of Anti-Restenosis Compounds Into Arterial Tissues From Drug-Eluting Arterial Stents

Jim Kircus Weizhong Dai Abdul Khaliq

July 2012 Louisiana Tech University LA-SiGMA RET/STEM

Anatomy of an Artery

Normal Artery

Anatomy of a Stent

Stent Placement with Angioplasty

Stenosis: over and over and over again Stenosis: narrowing of the vessel.

Restenosis: recurrence of stenosis.

Anti-Restenosis: inhibiting restenosis.

Drug-Eluting Stents

- Sirolimus and Paclitaxel
- Originally marketed as cancer treatments
- Inhibit rapid tissue growth
- Drugs are infused within a ploymer
- Stent is coated with the polymer
- Drug then elutes and diffuses into the surrounding tissue

Mathematics Issues During Modeling

• Plane Geometry: Circles, rectangles, dimensions.

• Standard Coordinate Systems: Plane and polar.

• Dimensional Analysis: Units and notation.

COMSOL Model

Diffusion Equation

Methods for Solving PDEs

Finite Difference Method (FDM)

• Finite Element Method (FEM)

COMSOL software applies the FEM

Analogy of the Squigglagon

The Mesh

-	 	***	 	MLL	
				annan Sinna	
				100	
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
				1. N. 1.	
C					
				100	
				198 ²⁰ 199	
				14	
				100	

-180

Concentration (mol/m³)

Conclusions

- The drug does, in fact, diffuse from the stent coating into the surrounding tissues.
- The diffusion exhibits a burst phase of diffusion characterized by a positive rate of change followed by a secondary phase of gradual diffusion of negative rate of change.
- The drug is present in the surrounding tissues 30 days after placement.

Directions for Future Study

- Increase the time frame of the study.
- Test different drugs at various initial concentrations.
- Test multi-layer coatings.
- Change the perspective of the model.

This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

