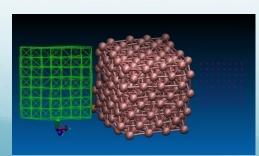
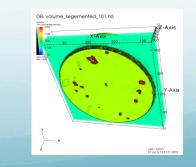

Implementing a Visualization Course into High School Curricula

By Christopher J. Hynes, Ph.D.

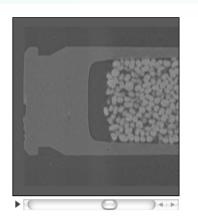




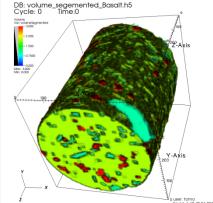
Keep pace with the times:

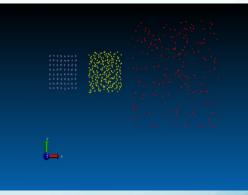
- Ph.D. in 1991, Analytical Chemistry, Oklahoma State University
- Teaching 20+ years at various colleges, universities, and Math & Science high schools
- Lots of changes:
 - Teaching methodologies (clickers, ebooks, applet demos)
 - Instrumentation (improved, smaller, cost, new varieties)
 - Sub-disciplines (Nano-technology, Computational Chemistry)
 - "Emerging" skill set: Visualization, HPC
- Our Science curricula is due for an update. Why not spice up traditional courses or add a new elective involving visualization?

Implementing Visualization into High School Curricula?

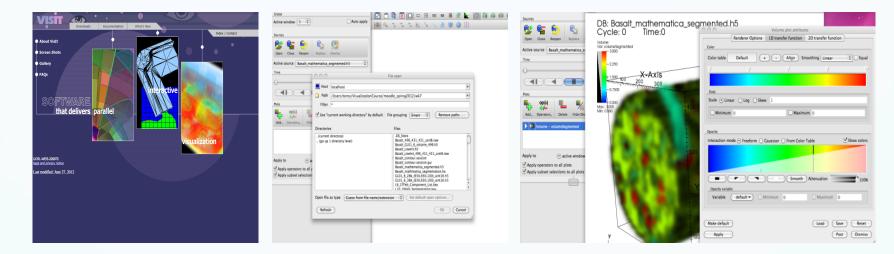

- LA-SiGMA summer 2011, molecular dynamics/visualization (LAAMPS¹, VMD²)
- LA-SiGMA summer 2012, visualization software
- Unique opportunity to create a cross-disciplinary course bringing together Visual Art, Science, and Computer Science
- Louisiana School for Math, Science and the Arts³ high aptitude and motivated students, 25% (on average) accepted to Top 40 colleges⁴
- Accelerate through traditional course offerings, leaving them with opportunities to take specialized Electives in their academic interest:
 - Digital Media I & II, Molecular & Cellular Bio, Botany, Organic, Biochemistry, Astronomy, Quantum Mechanics, Python, JAVA, Mobile App Development
 - Time is right to add Intro to Visualization

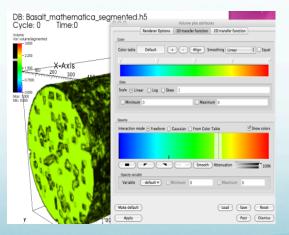
Objectives:

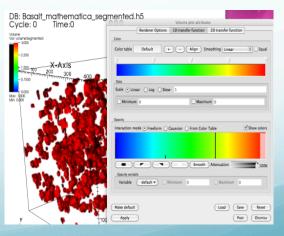

- Create a 1 semester Visualization course, "Introduction to Visualization" using Dr. Butler's CHEM 4581 as a "starting point"
- Icing on the cake use iBook authoring⁵ and present it in an iBook format
- Truly amazing allow the iBook to have access to a computer cluster on the back end
- Peer-peer instruction/collaboration


LASiGMA "research":

- Learning as much as I can about visualization: software, files, rendition types
- What works, what doesn't, advantages/ disadvantages, complementary
- Presenting it in a teachable format




ImageJ⁶ (freeware) Mathematica⁷ (\$\$\$) Vislt⁸ (freeware)


VMD² (freeware)

Example of Instruction sequence for Vislt⁸:

)B: Basalt_mathematica_segm Cycle: 0 Time:0	O O Volume plot attributes						
	Rent	Serer Options	1D transfer function 20		2D transfe	D transfer function	
Volme 	Rendering Method						
	Splatting		Traz	sfer function	⊙ 1D (20	
	Sampling Sample data onto regular grid						
The 100 200 300 400	Number of samples	5000000		Number of	slices	200	
	Samples per ray	500		Sampling ra	ite	3.00	
	Compact support variable			default		fault	۳)
	Methods						
	Gradient method O Centered differences O Sobel						
An 10 - 22	Sampling method Rasterization Kernel Based						
00	Smoothing						
	Smooth Data						
	Low gradient lighting						
	Reduction factor						
	Misc						
	Legend	✓ Lighting					
	Make default				Load	Save (Reset
Y TION	Apply					Post	Dismiss)

Future Work:

- Continue developing "detailed" teaching sequences
- Continue with i-book authoring
- Add more data files e.g. Astronomy, Anatomy, 4-D?
- Incorporate Blender⁹ ? (freeware)
- Pursue I-Corps grant¹⁰? NSF funded program to help bring an idea or process to commercialization. Uniqueness of visualization "course" via iBook with a HPC cluster on the back end?

Acknowledgements:

- Dr. Les Butler (mentor) ideas, words of wisdom, patience
- DJ Pleshinger & Jacob McDaniel iBook authoring and tutorial
- Southern University
- Louisiana State University
- LA-SiGMA supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents

References:

- 1) http://lammps.sandia.gov/
- 2) http://www.ks.uiuc.edu/Research/vmd/
- 3) http://www.lsmsa.edu
- 4) http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/nationaluniversities/data
- 5) http://www.apple.com/ibooks-author/
- 6) http://rsbweb.nih.gov/ij/
- 7) http://www.wolfram.com/mathematica/
- 8) https://wci.llnl.gov/codes/visit/
- 9) http://www.blender.org/
- 10) http://www.nsf.gov/news/special_reports/i-corps/