
Acknowledgements 

This material is based upon work supported by the National Science Foundation  

under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional  

support from the Louisiana Board of Regents. 

Many “Thanks” to … 

Brad Burkman LSMSA, Zhifeng Yun CCT LSU,  

Manjunatha Shenoy CCT LSU, Evan Cordell Tulane University & NewAperio,  

         Results and Future Work: 

 

   1. FAST! Created 1000 images 1920 x 1080 at 200 

 iterations in 13 minutes or a picture in less than a 

 second. Created 2000 images using from 200 to  

 4200 iterations in 56 minutes or 1.68 seconds/image. 

 

   2. Python should be capable of managing a “front end” 

 and call the CUDA program for the image data in  

 “real time”. Dr. Schoegl is working on it! 

 

   3. Limit of 1000 images per run on local workstation. 

 Can get at least 4000 on the GPU queue at HPC. 

 

   4. The “double” numeric type allows for only 15 places 

 of accuracy. Use CUMP CUDA Multiple Precision? 

 

   5. Difficult to choose good points for zooming. 

 

In parallel programming we can envision each pixel having its own 

“worker”. For the grid below, there are 256 workers iterating and 

keeping track of the results. When all the workers are done, they 

report the number of iterations back to the CPU and the screen is 

finished. We only need the “while” loop (100 calculations) for the 

iterations, but we use 1920 x 1080 = 2,073,600 workers to color the 

screen. 
  1  1  1  1  2  2  2  2  2  2  2  2  2  2  2  2 

  1  1  1  2  2  2  3  3  2  2  2  2  2  2  2  2 

  1  1  2  2  3  3  3  3  5  4  3  2  2  2  2  2 

  1  1  3  3  3  3  4  4  7  8  4  3  2  2  2  2 

  1  2  3  3  3  4  4  62225  6  4  3  2  2  2 

  1  3  3  3  4  5  72525252511  3  3  2  2 

  1  3  4  6  7  7212525252516  4  3  2  2 

  1  4  5  72525252525252512  4  3  2  2 

  125252525252525252525  6  4  3  2  2 

  1  4  5  72525252525252512  4  3  2  2 

  1  3  4  6  7  7212525252516  4  3  2  2 

  1  3  3  3  4  5  72525252511  3  3  2  2 

  1  2  3  3  3  4  4  62225  6  4  3  2  2  2 

  1  1  3  3  3  3  4  4  7  8  4  3  2  2  2  2 

  1  1  2  2  3  3  3  3  5  4  3  2  2  2  2  2 

  1  1  1  2  2  2  3  3  2  2  2  2  2  2  2  2 

              16 x 16 grid example 

 

In C++ we envision calculating the entire screen one pixel at a time 

using one worker. The outer “for” loop is for the real part of the 

complex number, a + bi, and the inner “for” loop is for the imaginary 

part of the complex number. The “while” loop counts up the 

iterations for the complex function Q. All loops use our one worker. 
 

   for (a = realMin ; a < realMax ; a = a + dx) { 

      for (b = imagMin ; b < imagMax ; b = b + dy) { 

         xReal = 0; 

         yImag = 0; 

         iter = 0; 

         while (iter < maxIter && xReal*xReal + yImag*yImag < 4) { 

            temp = xReal; 

            xReal = xReal*xReal - yImag*yImag + a; 

            yImag = 2 * temp * yImag + b ; 

            iter = iter + 1; 

         } // end while 

      } // end inner for 

   } // end outer for 

 

This could be 1920 x 1080 x 100 = 207,360,000 calculations! 
 

C++ Method 

CUDA Method 

 

   // *** Iteration loop *** 

   while (d_iter[idx] <  maxiter  && d_radius[idx] <  escapeCriteria) { 

        tmp = d_rz[idx]; 

        d_rz[idx] = d_rz[idx] * d_rz[idx] – d_iz[idx] * d_iz[idx] + d_rc[idx];  

        d_iz[idx] = 2 * tmp * d_iz[idx] + d_ic[idx]; 

        d_radius[idx] = d_rz[idx] * d_rz[idx] + d_iz[idx] * d_iz[idx]; 

        d_iter[idx] = d_iter[idx] + 1; 

   } // end while 

 

The only difference between the CUDA code snippet below and 

the C++  “while” loop to the left is the [idx]. The “index”, allows 

all threads to be referenced and calculated at the same time. 

CUDA cont’d Learn parallel programming using NVIDIA’s Compute 

Unified Device Architecture (CUDA) language and 

offer a CUDA class at my home school, LSMSA. 

The Goal 

  2Q z z c 

The Vehicle 
Write a program that would use 

parallel programming to draw the 

Mandelbrot Set (Pictured to the right) 

and zoom into any desired position. 

Zooming into the Mandelbrot Set  

using CUDA Programming 
David Andersen1, Juana Moreno2, Mark Jarrell2, Ingmar Schoegl3 

1Instructor – LSMSA, 2Physics Professor – LSU, 3Associate Professor - LSU 

The Construction 
Consider the monitor screen as a 

complex plane (shown to left). 

Every pixel becomes a complex 

number, a + bi. For each pixel use 

the “complex quadratic”… 

where c = a + bi and z starts at 0 + 0i. Iterate Q to get a 

list of complex numbers. If this list diverges, goes to 

infinity, color the pixel -- hot colors if it diverges 

quickly and cold colors if it diverges slowly. The black 

points, those that don’t escape, ARE the Mandelbrot 

Set. 

Notice the black “blips” just outside the set. These 

“baby” Mandelbrot Sets are at every depth we zoom 

into. As we zoom we must increase the number of 

iterations to increase the accuracy which increases the 

calculation time. We need CUDA! 


