
Parallelizing Protein Docking Code to Accelerate Drug Discovery
Brad Burkman1, Michal Brylinski2,3, Wei Feinstein2,3

1Louisiana School for Math, Science, and the Arts, 2Center for Computation & Technology, Louisiana State University,
3Department of Biological Sciences, Louisiana State University

ouisiana School
for Math, Science, and the Arts

Abstract

The majority of drugs work by binding to specific regions of phar-
macologically relevant proteins (enzymes, receptors, regulatory
proteins, etc.) to attenuate or even impair their molecular func-
tions. Because protein-protein interaction sites are attractive tar-
gets for therapeutics, the accurate modeling of protein assemblies
at the atomic level is critical in modern computer-aided drug dis-
covery.

This work took an academic version of ZDOCK, one of the most
widely used protein docking algorithms, and attempted to speed
up the code through parallelization on multiple CPU cores, as
well as using MIC and GPU accelerators. In anticipation of LSU’s
new SuperMIC cluster becoming operational, this study used the
Stampede cluster, an XSEDE resource at the Texas Advanced
Computing Center.

Thus far, we have achieved a ten-fold speedup using just the six-
teen cores on the CPU and a four-fold speedup by offloading Fast
Fourier Transforms to the GPU. Our work with the MIC continues.
By combining and refining these techniques, we reasonably hope
for a twenty-fold speedup in this key step in drug discovery.

Glossary

CPU Central Processing Unit (“host”)

MIC Intel Many Integrated Core coprocessor (“target”)

GPU Graphics Processing Unit (“device”)

Serial Running one process at a time

Parallel Running multiple processes simultaneously

FFT Fast Fourier Transform

Serial Code Profile

At the heart of the code is a loop of thousands of independent
processes, each requiring several Fast Fourier Transforms.

Section Runtime Runtime
of Code (Seconds) (Proportion)

Before Loop 1.94 0.57 %

Loop 340.38 99.32 %

After Loop 0.39 0.11 %

Parallelizing for the CPU, MIC, and GPU

CPU MIC GPU

Intel Xeon E5
16 cores

21.6 GFLOPS/core
32 GB

Intel Xeon Phi
60 cores

16.2 GFLOPS/core
8 GB

NVIDIA K20
2496 cores

1.4 GFLOPS/core
5 GB

Results

Protein Serial Parallel Speedup Parallel Speedup
Size Code on CPU on CPU on GPU* on GPU*

(Seconds) (Seconds) (Seconds)

Small 319 33 9.5x 110 2.9x
Medium 1410 112 12.5x 342 4.1x
Large 14000 1230 11.4x 2800 5.0x

*Preliminary results. GPU code runs but does not yet give correct results.

Parallelization Strategies

CPU: OpenMP on big loop

GPU
Copy protein to device
Repeat ≈ 25,000 times:

On Host
Rotate ligand
Copy ligand to device

On Device
Forward FFT
Complex Multiplication
Inverse FFT

Copy ligand to host
Calculate scoring on host

Parallelization Challenges

GPU
• Finding helpful, current

documentation
• cufft and fftw have diffferent

syntax and options
• CUDA code gives different results

(still debugging)

MIC
• Automatic offloading of Fast

Fourier Transforms does not yet
exist, and may not be possible

• Passing fftw structs to the target

Future Work
Easy
• In GPU code, do the scoring on the device instead of

copying the ligand to the host
• Flatten fftw structs to send to MIC to accelerate FFT

computation
• Anticipate developments in Intel FFT libraries for the MIC

Hard
• Fully utilize the host and device simultaneously
• Use multiple nodes

Acknowledgements

This material is based upon work in the LA-SiGMA Research
Experiences for Teachers program, supported by the Na-
tional Science Foundation under the NSF EPSCoR Cooper-
ative Agreement No. EPS-1003897 with additional support
from the Louisiana Board of Regents.

This work used the computing resources of the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant
number OCI-1053575

Contact

Brad Burkman bburkman@lsmsa.edu
Lecturer in Mathematics,
Student Research Advisor
XSEDE Campus Champion

Louisiana School for Math, Sci., and the Arts


