
Parquet notes
April 23, 2009



0.1 Formalism0.1.1 vertex funtionsThese perturbative expansions attempt to desribe all the sattering proesses that take plaein the system as one- or two-partile Feynman diagrams. In the one-partile formalism theself-energy desribes the many-body proesses that renormalize the motion of a partile inthe interating bakground of all the other partiles. In the two partile ontext, with the aidof the parquet formalism, one is able to probe the interations between partiles in greaterdetail using the so-alled vertex funtions, whih are matries desribing the two partilesattering proesses. For example, the reduible two-partile vertex F ph
h (12; 34) desribesthe amplitude of a partile-hole pair sattered from its initial state |3, 4 > into the �nal state

|1, 2 >. Here, i = 1, 2, 3, 4 represents a set of indies whih ombines the momentum ki, thematsubara frequeny iωni
and, if needed, the spin σi and band index mi.In general, depending on how partiles or holes are involved in the sattering proesses,one an de�ne three di�erent two-partile sattering hannels. These are the partile-hole(p-h) horizontal hannel, the p-h vertial hannel and the partile-partile (p-p) hannel. Forthe Hubbard model, the spin degree of freedom further divides the partile-partile hannelinto triplet and singlet hannels while the partile-hole is divided into density and magnetihannels.One an further di�erentiate the verties on the basis of their topology. Then one wouldend up with the reduible vertex noted F , the irreduible vertex Γ orresponding to a sublassof diagrams in F that an not be separated in two by breaking two horizontal Green's funtionlines, and the fully irreduible vertex whih orresponds to the sublass of diagrams in Γ thatan not be split in two parts by breaking two vertial Green's funtion lines. An illustrationof these di�erent types of verties is provided in �gure 1.The Pauli exlusion priniple produes the so-alled rossing symmetries whih in turnyields a relationship between these verties in the di�erent hannels. This enables us to re-due the independent hannels de�ned for the theory to the partile-partile and the partile-hole horizontal hannel. The di�erent lasses of verties are related by a set of equationswhih we will disuss next.
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Figure 1: di�erent lasses of diagrams; the solid line represents the single partile Green'sfuntion and the wavy line represents the Coulomb interation: here we use the p-h horizontalhannel for illustration (a) reduible diagrams: an be separated into two parts by breakingtwo horizontal Green's funtion lines, (b) irreduible diagrams: an only be separated in twoparts by breaking two Green's funtion lines in the other two hannels, () fully irreduiblediagrams : an not be split in two parts by breaking two Green's funtion lines in any hannel0.1.2 equationsThe parquet formalism is self-onsistent at both the one- and two-partile levels. The onne-tion between the one- and two-partile quantities is through the Shwinger-Dyson equationwhih onnets the reduible vertex F to the self-energy Σ. It is an exat equation derived
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from the equation of motion and has the following form:
Σ(P ) = −

UT 2

4N

∑

P ′,Q

{G(P ′)G(P ′ + Q)G(P − Q)(Fd(Q)P−Q,P ′ − Fm(Q)P−Q,P ′)

+G(−P ′)G(P ′ + Q)G(−P + Q)(Fs(Q)P−Q,P ′ + Ft(Q)P−Q,P ′)} (1)where G is the single-partile Green's funtion, whih itself an be alulated from the self-energy using the Dyson's equation:
G−1 = G−1

0 − Σ (2)The reduible and the irreduible verties in a given hannel are related by the Bethe-Salpeter equation. It has the following form:
Fd/m(Q)P,P ′ = Γd/m(Q)P,P ′ + Φd/m(Q)P,P ′ (3)
Fs/t(Q)P,P ′ = Γs/t(Q)P,P ′ + Ψs/t(Q)P,P ′ (4)where r = d/m for the density and magneti hannels respetively and r′ = s/t for thesinglet and triplet hannels, and we are using the vertex ladders whih are de�ned as:

Φd/m(Q)P,P ′ ≡
∑

P ′′

Fd/m(Q)P,P ′′χph
0 (Q)P ′′Γd/m(Q)P ′′,P ′ (5)

Ψs/t(Q)P,P ′ ≡
∑

P ′′

Fs/t(Q)P,P ′′χpp
0 (Q)P ′′Γs/t(Q)P ′′,P ′ (6)

χ0 is the diret produt of two single-partile Green's funtions and is de�ned aording tothe partile-partile or the partile-hole hannel.In a similar manner, the irreduible vertex and the fully irreduible vertex are related bythe parquet equation. This expresses the fat that the irreduible vertex in a given hannelis still reduible in the other two hannels. The parquet equation has the following form inthe di�erent hannels:
Γd(Q)PP ′ = Λd(Q)PP ′ −

1

2
Φd(P

′ − P )P,P+Q −
3

2
Φm(P ′ − P )P,P+Q

+
1

2
Ψs(P + P ′ + Q)−P−Q,−P +

3

2
Ψt(P + P ′ + Q)−P−Q,−P (7)

Γm(Q)PP ′ = Λm(Q)PP ′ −
1

2
Φd(P

′ − P )P,P+Q +
1

2
Φm(P ′ − P )P,P+Q

−
1

2
Ψs(P + P ′ + Q)−P−Q,−P +

1

2
Ψt(P + P ′ + Q)−P−Q,−P (8)3



Γs(Q)PP ′ = Λs(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q −
3

2
Φm(P ′ − P )−P ′,P+Q

+
1

2
Φd(P + P ′ + Q)−P ′,−P −

3

2
Φm(P + P ′ + Q)−P ′,−P (9)

Γt(Q)PP ′ = Λt(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q +
1

2
Φm(P ′ − P )−P ′,P+Q

−
1

2
Φd(P + P ′ + Q)−P ′,−P −

1

2
Φm(P + P ′ + Q)−P ′,−P (10)The Bethe-Salpeter equation and parquet equations are also exat and derived from theategorization of the Feynman diagrams.The above desription of the formalism is far from being exhaustive and is given forthis paper to be reasonably self-ontained. For a more detailed desription of the parquetformalism, we refer the reader to Bikers et al [2℄[3℄. Our goal is to solve these equationsself-onsistently for the Hubbard model on a two dimensional luster. The algorithm for thissolution is desribed in the next setion.0.2 Algorithm and omputational hallengeThe set of equations diussed above are solved self-onsistently as illustrated in the self-onsisteny loop in �gure 2. One starts with a guess of the one-partile Green's funtion orself-energy. This an be taken from the seond order approximation. The reduible and theirreduible verties are also initialized with the bare interation. The self-onsisteny loopan then be desribed as follows:(i) �rst we alulte the bare suseptibility χ0 whih is just the produt of two Green'sfuntions(ii) next this bare suseptibility is used to alulate F through the Bethe-Salpeter equation(iii) we then proeed with solving the parquet equation whih enables us to update theirreduible vertex Γ. This step requires the input of the fully irreduible vertex Λ whih inthe ontext of the parquet approximation is simply taken to be the bare interation. It analso be derived from some more sophistiated methods.(iv) it is followed by a alulation of the new F through the Bethe-Salpeter equation(v) this value of F is then used to update the self-energy through the Shwinger Dysonequation(vi) the Dyson's equation is then solved for the Green's funtion G.This loop is repeated until onvergene of the self-energy Σ is ahieved within a reasonableriterion. 4
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Figure 2: self-onsisteny loopUnfortunately, this loop beomes unstable when the Coulomb interation strength isinreased or the temperature is lowered. This leads us to use some variations of the abovesheme. One possibility is to start with an overestimated self-energy and to damp it alongwith the irreduible vertex between two iterations aording to:
Σ = α1Σnew + (1 − α1)Σold (11)
Γ = α2Γnew + (1 − α2)Γold (12)where α1 and α2 are some damping parameters.The other possibility is to rewrite the oupled Bethe-Salpeter and parquet equations inthe form of a Newton �xed-point problem. Then we an take advantage of the existing linearsolvers suh as BiCGS [7℄ or GMRES [6℄.One major advantage that the parquet formalism has over Exat Diagonalization (ED)or Quantum Monte Carlo (QMC) is that it sales algebraially with the volume of the systemin spae-time as one an readily observe. The most time-onsuming part of the formalismis the solution of the Bethe-Salpeter and the parquet equations, where the omputationaltime sales as O(nt4) where nt = nc × nf , nc being the number of sites on the luster and

nf the number of Matsubara frequenies . Although the saling is better than that of ED orQMC, one an see that when the system size grows, the problem quikly grows beyond theapaity of the usual desktops and beomes suitable for a distribution on a large number ofproessors on a superomputer.Our parallel sheme and our data distribution are based on the realization that the BetheSalpeter equation is the most time-onsuming part of our alulation. One an easily see thatit deouples niely with respet to the bosoni momentum-frequeny index Q. This enablesus to distribute the verties aross proessors with respet to this third index and to solve the5



Bethe-Salpeter equation with a loal matrix inversion. However, this storage sheme puts alimit on the size of the problem that we an address. For a node with 2G of memory, themaximum value of nt that we an use if our variables are omplex double preision is about
2500. Unlike the Bethe-Salpeter equation, one an readily observe that the parquet equationdoesn't deouple in terms of the third index. Solving this equation requires a rearrangementof the matrix elements aross proessors and this is the ommuniation bottlenek in thealgorithm. The rearrangement is neessary to obtain the form of the vertex ladderΦ orΨ thatis neessary in the parquet equation. For instane, in the d hannel, we need Φ (P − P ′)P,P+Q.This form of the vertex ladder is obtained in the three-step proess desribed in equations13, 14 and 15.

Φ (Q)P,P ′ =⇒ Φ (Q)P,P−P ′ (13)
Φ (Q)P,P−P ′ =⇒ Φ (P − P ′)P,Q (14)

Φ (P − P ′)P,Q =⇒ Φ (P − P ′)P,P+Q (15)The �rst step in this transformation only moves data loally in memory. This doesn'trequire muh time. The seond step is atually just a 2D matrix transpose but with matrixelements spread on many nodes. This is where ommuniation aross nodes is required. Itis ahieved by using the standard MPI olletive diretives. The �nal step is also loal andan equally be done very fast.
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