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0.1 Formalism0.1.1 vertex fun
tionsThese perturbative expansions attempt to des
ribe all the s
attering pro
esses that take pla
ein the system as one- or two-parti
le Feynman diagrams. In the one-parti
le formalism theself-energy des
ribes the many-body pro
esses that renormalize the motion of a parti
le inthe intera
ting ba
kground of all the other parti
les. In the two parti
le 
ontext, with the aidof the parquet formalism, one is able to probe the intera
tions between parti
les in greaterdetail using the so-
alled vertex fun
tions, whi
h are matri
es des
ribing the two parti
les
attering pro
esses. For example, the redu
ible two-parti
le vertex F ph
h (12; 34) des
ribesthe amplitude of a parti
le-hole pair s
attered from its initial state |3, 4 > into the �nal state

|1, 2 >. Here, i = 1, 2, 3, 4 represents a set of indi
es whi
h 
ombines the momentum ki, thematsubara frequen
y iωni
and, if needed, the spin σi and band index mi.In general, depending on how parti
les or holes are involved in the s
attering pro
esses,one 
an de�ne three di�erent two-parti
le s
attering 
hannels. These are the parti
le-hole(p-h) horizontal 
hannel, the p-h verti
al 
hannel and the parti
le-parti
le (p-p) 
hannel. Forthe Hubbard model, the spin degree of freedom further divides the parti
le-parti
le 
hannelinto triplet and singlet 
hannels while the parti
le-hole is divided into density and magneti

hannels.One 
an further di�erentiate the verti
es on the basis of their topology. Then one wouldend up with the redu
ible vertex noted F , the irredu
ible vertex Γ 
orresponding to a sub
lassof diagrams in F that 
an not be separated in two by breaking two horizontal Green's fun
tionlines, and the fully irredu
ible vertex whi
h 
orresponds to the sub
lass of diagrams in Γ that
an not be split in two parts by breaking two verti
al Green's fun
tion lines. An illustrationof these di�erent types of verti
es is provided in �gure 1.The Pauli ex
lusion prin
iple produ
es the so-
alled 
rossing symmetries whi
h in turnyields a relationship between these verti
es in the di�erent 
hannels. This enables us to re-du
e the independent 
hannels de�ned for the theory to the parti
le-parti
le and the parti
le-hole horizontal 
hannel. The di�erent 
lasses of verti
es are related by a set of equationswhi
h we will dis
uss next.
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Figure 1: di�erent 
lasses of diagrams; the solid line represents the single parti
le Green'sfun
tion and the wavy line represents the Coulomb intera
tion: here we use the p-h horizontal
hannel for illustration (a) redu
ible diagrams: 
an be separated into two parts by breakingtwo horizontal Green's fun
tion lines, (b) irredu
ible diagrams: 
an only be separated in twoparts by breaking two Green's fun
tion lines in the other two 
hannels, (
) fully irredu
iblediagrams : 
an not be split in two parts by breaking two Green's fun
tion lines in any 
hannel0.1.2 equationsThe parquet formalism is self-
onsistent at both the one- and two-parti
le levels. The 
onne
-tion between the one- and two-parti
le quantities is through the S
hwinger-Dyson equationwhi
h 
onne
ts the redu
ible vertex F to the self-energy Σ. It is an exa
t equation derived
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from the equation of motion and has the following form:
Σ(P ) = −

UT 2

4N

∑

P ′,Q

{G(P ′)G(P ′ + Q)G(P − Q)(Fd(Q)P−Q,P ′ − Fm(Q)P−Q,P ′)

+G(−P ′)G(P ′ + Q)G(−P + Q)(Fs(Q)P−Q,P ′ + Ft(Q)P−Q,P ′)} (1)where G is the single-parti
le Green's fun
tion, whi
h itself 
an be 
al
ulated from the self-energy using the Dyson's equation:
G−1 = G−1

0 − Σ (2)The redu
ible and the irredu
ible verti
es in a given 
hannel are related by the Bethe-Salpeter equation. It has the following form:
Fd/m(Q)P,P ′ = Γd/m(Q)P,P ′ + Φd/m(Q)P,P ′ (3)
Fs/t(Q)P,P ′ = Γs/t(Q)P,P ′ + Ψs/t(Q)P,P ′ (4)where r = d/m for the density and magneti
 
hannels respe
tively and r′ = s/t for thesinglet and triplet 
hannels, and we are using the vertex ladders whi
h are de�ned as:

Φd/m(Q)P,P ′ ≡
∑

P ′′

Fd/m(Q)P,P ′′χph
0 (Q)P ′′Γd/m(Q)P ′′,P ′ (5)

Ψs/t(Q)P,P ′ ≡
∑

P ′′

Fs/t(Q)P,P ′′χpp
0 (Q)P ′′Γs/t(Q)P ′′,P ′ (6)

χ0 is the dire
t produ
t of two single-parti
le Green's fun
tions and is de�ned a

ording tothe parti
le-parti
le or the parti
le-hole 
hannel.In a similar manner, the irredu
ible vertex and the fully irredu
ible vertex are related bythe parquet equation. This expresses the fa
t that the irredu
ible vertex in a given 
hannelis still redu
ible in the other two 
hannels. The parquet equation has the following form inthe di�erent 
hannels:
Γd(Q)PP ′ = Λd(Q)PP ′ −

1

2
Φd(P

′ − P )P,P+Q −
3

2
Φm(P ′ − P )P,P+Q

+
1

2
Ψs(P + P ′ + Q)−P−Q,−P +

3

2
Ψt(P + P ′ + Q)−P−Q,−P (7)

Γm(Q)PP ′ = Λm(Q)PP ′ −
1

2
Φd(P

′ − P )P,P+Q +
1

2
Φm(P ′ − P )P,P+Q

−
1

2
Ψs(P + P ′ + Q)−P−Q,−P +

1

2
Ψt(P + P ′ + Q)−P−Q,−P (8)3



Γs(Q)PP ′ = Λs(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q −
3

2
Φm(P ′ − P )−P ′,P+Q

+
1

2
Φd(P + P ′ + Q)−P ′,−P −

3

2
Φm(P + P ′ + Q)−P ′,−P (9)

Γt(Q)PP ′ = Λt(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q +
1

2
Φm(P ′ − P )−P ′,P+Q

−
1

2
Φd(P + P ′ + Q)−P ′,−P −

1

2
Φm(P + P ′ + Q)−P ′,−P (10)The Bethe-Salpeter equation and parquet equations are also exa
t and derived from the
ategorization of the Feynman diagrams.The above des
ription of the formalism is far from being exhaustive and is given forthis paper to be reasonably self-
ontained. For a more detailed des
ription of the parquetformalism, we refer the reader to Bi
kers et al [2℄[3℄. Our goal is to solve these equationsself-
onsistently for the Hubbard model on a two dimensional 
luster. The algorithm for thissolution is des
ribed in the next se
tion.0.2 Algorithm and 
omputational 
hallengeThe set of equations di
ussed above are solved self-
onsistently as illustrated in the self-
onsisten
y loop in �gure 2. One starts with a guess of the one-parti
le Green's fun
tion orself-energy. This 
an be taken from the se
ond order approximation. The redu
ible and theirredu
ible verti
es are also initialized with the bare intera
tion. The self-
onsisten
y loop
an then be des
ribed as follows:(i) �rst we 
al
ulte the bare sus
eptibility χ0 whi
h is just the produ
t of two Green'sfun
tions(ii) next this bare sus
eptibility is used to 
al
ulate F through the Bethe-Salpeter equation(iii) we then pro
eed with solving the parquet equation whi
h enables us to update theirredu
ible vertex Γ. This step requires the input of the fully irredu
ible vertex Λ whi
h inthe 
ontext of the parquet approximation is simply taken to be the bare intera
tion. It 
analso be derived from some more sophisti
ated methods.(iv) it is followed by a 
al
ulation of the new F through the Bethe-Salpeter equation(v) this value of F is then used to update the self-energy through the S
hwinger Dysonequation(vi) the Dyson's equation is then solved for the Green's fun
tion G.This loop is repeated until 
onvergen
e of the self-energy Σ is a
hieved within a reasonable
riterion. 4
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Figure 2: self-
onsisten
y loopUnfortunately, this loop be
omes unstable when the Coulomb intera
tion strength isin
reased or the temperature is lowered. This leads us to use some variations of the aboves
heme. One possibility is to start with an overestimated self-energy and to damp it alongwith the irredu
ible vertex between two iterations a

ording to:
Σ = α1Σnew + (1 − α1)Σold (11)
Γ = α2Γnew + (1 − α2)Γold (12)where α1 and α2 are some damping parameters.The other possibility is to rewrite the 
oupled Bethe-Salpeter and parquet equations inthe form of a Newton �xed-point problem. Then we 
an take advantage of the existing linearsolvers su
h as BiCGS [7℄ or GMRES [6℄.One major advantage that the parquet formalism has over Exa
t Diagonalization (ED)or Quantum Monte Carlo (QMC) is that it s
ales algebrai
ally with the volume of the systemin spa
e-time as one 
an readily observe. The most time-
onsuming part of the formalismis the solution of the Bethe-Salpeter and the parquet equations, where the 
omputationaltime s
ales as O(nt4) where nt = nc × nf , nc being the number of sites on the 
luster and

nf the number of Matsubara frequen
ies . Although the s
aling is better than that of ED orQMC, one 
an see that when the system size grows, the problem qui
kly grows beyond the
apa
ity of the usual desktops and be
omes suitable for a distribution on a large number ofpro
essors on a super
omputer.Our parallel s
heme and our data distribution are based on the realization that the BetheSalpeter equation is the most time-
onsuming part of our 
al
ulation. One 
an easily see thatit de
ouples ni
ely with respe
t to the bosoni
 momentum-frequen
y index Q. This enablesus to distribute the verti
es a
ross pro
essors with respe
t to this third index and to solve the5



Bethe-Salpeter equation with a lo
al matrix inversion. However, this storage s
heme puts alimit on the size of the problem that we 
an address. For a node with 2G of memory, themaximum value of nt that we 
an use if our variables are 
omplex double pre
ision is about
2500. Unlike the Bethe-Salpeter equation, one 
an readily observe that the parquet equationdoesn't de
ouple in terms of the third index. Solving this equation requires a rearrangementof the matrix elements a
ross pro
essors and this is the 
ommuni
ation bottlene
k in thealgorithm. The rearrangement is ne
essary to obtain the form of the vertex ladderΦ orΨ thatis ne
essary in the parquet equation. For instan
e, in the d 
hannel, we need Φ (P − P ′)P,P+Q.This form of the vertex ladder is obtained in the three-step pro
ess des
ribed in equations13, 14 and 15.

Φ (Q)P,P ′ =⇒ Φ (Q)P,P−P ′ (13)
Φ (Q)P,P−P ′ =⇒ Φ (P − P ′)P,Q (14)

Φ (P − P ′)P,Q =⇒ Φ (P − P ′)P,P+Q (15)The �rst step in this transformation only moves data lo
ally in memory. This doesn'trequire mu
h time. The se
ond step is a
tually just a 2D matrix transpose but with matrixelements spread on many nodes. This is where 
ommuni
ation a
ross nodes is required. Itis a
hieved by using the standard MPI 
olle
tive dire
tives. The �nal step is also lo
al and
an equally be done very fast.
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