

Louisiana Alliance for Simulation-Guided Materials Applications

Materials for Energy Storage

Lawrence R. Pratt Tulane University

Goals and Milestones

Recruit and mentor a diverse group of students and postdocs. Progress is described in subsequent reports.

Simulate pore filling in electrochemical double layer (EDCL) capacitors based on carbon nanotube (CNT) forests; understand the electronics and the role of quantum capacitance (Focus 1).

Develop algorithms that combine chemistry and physics of H₂ storage (<u>Focus 2</u>).

Model catalytic processes with new force fields (Focus <u>3</u>).

Materials for energy storage

Focus 1: EDCL supercapacitors based on a CNT forests.

Focus 2: Optimizing H₂ storage materials utilizing multi-scale modeling.

New Focus: Improvement of polymer matrix for lithium ion battery

performance.

Molecular modeling of EDCL supercapacitors

- Electrical energy storage where rapid charge/discharge (high power density) is required. Compared to batteries, capacitors have long lifetimes and temperature-insensitivity.
- CNT forests offer possibilities for molecular design. Therefore, a molecular understanding should be worthwhile.
- H. S. Ashbaugh, L. R. Pratt, N. Pesika (Tulane), and S. W. Rick (UNO) combine statistical thermodynamics, *ab initio* molecular dynamics, large scale molecular simulations, and experiments.

Focus 1

Accurate prediction of properties of electronic materials

- Rigorous method for accurate, predictive calculations of electronic and transport properties of semiconductors. (BZW-EF = Bagayoko, Zhao, and Williams method improved by the work of Ekumar and Franklin)
- Applied to band gaps and other properties of TiO₂, Imp, and SrTiO₃, excellent agreement with experimental results.
- BZW-EF permits *ab-initio*, accurate, self-consistent calculations of new materials, and can guide the design of semiconductor materials.
 - See the recently published (online) article on SrTiO₃ In AIP Advances by Kumar, Jarrell, Moreno, and Bagayoko

Focus 1

Critical issues for hydrogen storage

- Thermodynamics, kinetics, and energy density, *i.e.*, weight of the storage matrix.
- Ab initio (electronic structure) computational methods provide atomic-level materials properties, but not dynamic experimental properties.
- Multiscale approach to link large scale thermodynamic and dynamic properties the molecular level characteristics.

Multi-scale modeling: H₂ storage

Use electronic structure for parameterization of atom-based molecular model

Collaboration spanning multiple disciplines

Researcher	Institution	Area of Expertise
Daniela Mainardi	LA Tech	Periodic ab initio calculations and dynamics
Les Butler	LSU	Experimental imaging materials in real time
Randy Hall	LSU	Ab initio calculations
Bin Chen	LSU	Force field development and molecular simulation
Weizhong Dai	LA Tech	Mathematical/numerical simulation

Modeling from ab-initio methods

DFT input

Focus 2

- Structure and Energetics Tibonding
- Kinetics Rate-limiting steps in modeling H₂ desorption at surfaces for processes on time-scales of minutes

Electron Density Map on the [001] plane of Ti-Doped NaMgH3

Kinetics of H Storage Materials

Models

Group Members

Free-Energy

Barrier for H₂

RET- Jeanine Edgecombe Ph.D. Student- Purnima Karidehal

REU- Mathew Wespetal

Undergraduate Student-Ashley Matthews (102 KJ/mol H₂)

Ph..D. Student- Fernando Soto

(68 KJ/mol H₂)

Numerical model for H dynamics and thermodynamics

- Mathematical model: H₂ absorption/desorption in a 3D metalhydrogen cylindrical reactor using a finite difference/control volume scheme to solve it.
- Target: 3D LaNi₅ H₂ in a cylindrical reactor, for comparison with the experimentals of Butler/LSU.
- Goal: inverse algorithm to determine the critical parameters for thermodynamics and rates of hydrogen absorption/desorption.

Modeling H adsorption/desorption in a cylindrical reactor

Evolution of H₂ desorption after 30 minutes.

EPSCoR

Focus 2

New catalysts for H₂ fuel cells

- Platinum-on-carbon electrodes are essential to conventional fuel cell designs. But platinum is rare and expensive.
- Nitrogen-doped carbon nanotubes (N-CNTs) show promise as alternative fuel cell catalysts [Dai *et al.*, *Science* **323**, 760 (2009)].
- G.-L. Zhao and F. Gao/SUBR carry out DFT calculations using VASP and GGA electron density functionals.

O₂ can be absorbed and reduced on N-CNT edges.

Catalytic processes for fuel generation and bi-product minimization

- Copper and iron oxide nanoparticles catalyze the formation of potentially carcinogenic free radicals.
- Ab-initio calculations on small clusters compare with experiment on larger clusters and model nanoparticle surfaces.
- Alumina is a common catalyst support.

- Ab initio studies have investigated the behavior of aluminasupported catalysts, but we need to simulate larger systems.
- We are developing force fields to be able to carry out larger scale simulations.

Force field parameterization: clusters that model crystal interactions

- DFT calculations
- Model: charge-dependent environment
- Success with Al_2O_3 , FeO, and

CuO crystal Structure

FeO₂

Property	Experiment	Predicted
α	90°	90.3°
β	99.6	96.9°
γ	90°	91.0°
<i>a</i> (Å)	4.68	4.56
b (Å)	3.42	3.55
<i>c</i> (Å)	5.13	5.03

Comparison of atomization				
energies (into neutral atoms)				
	DFT	model		
Cu ₃ O ₄	-334.8	-331.8		
Cu ₂ O ₂ *	-185.5	-185.4		
Cu ₃ O ₃	-338.0	-333.4		
Cu₄O₄	-475.6	-439		

*Only system we parameterized except Cu(OH)₄

Improvement of lithium ion transport in

polymer electrolytes Basic

Acidic

$D^{xyz}_{Li} \times 10^{-8}$	BULK	0.31 ± 0.02
$D^{xy}_{Li} \times 10^{-8}$	ACID	0.75 ± 0.16
(cm^2/s)	BASE	0.45 ± 0.06
D^{xyz} _{ClO4} x 10 ⁻⁸	BULK	0.78 ± 0.07
D^{xy}_{ClO4} x 10 ⁻⁸	ACID	1.32 ± 0.28
(cm^2/s)	BASE	0.71 ± 0.09

New Focus

- Polymer electrolytes are safer and more durable than traditional liquid electrolytes, but they slow lithium ion transport. Polymer blending might help.
- In agreement with experiment, simulation lithium ion mobility is enhanced near (within 30 Å) an acidic alumina surface.

Croce, F.; et al., Electrochim. Acta 2001, 46, 2457.

Tomography for real-time 3d imaging

- Help development of \$20M SNS VENUS tomography beamlineL
- Large datasets and algorithms
- Image with polychromatic neutron beam with dynamic tomography data acquisition. Fire retardants, one with Sb, and the other with Br

There is a lot space without one or the other, but almost all volume has some Sb or Br present.

Sb and Br retardants work cooperatively to maximize the volume occupied by retardant.

