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SD3 Research Themes V.

Simulated Carrier Design Experimental Carrier Design
Ashbaugh (Tulane), Moldovan (LSU), Grayson (Tulane), Robinson(Tulane),
Derosa (LATech/Grambling), Jha (LSU), Sabilov (LSU),
and Niktopoulos (LSU) Devireddy (LSU), and Lvov (LSU)
Drug
Delivery

Materials

—

Potential Development
Ashbaugh (Tulane), Reily (Xavier), Free Energy/Docking Calculations
Moldovan (LSU), and Rick (UNO), Reily (Xavier), Brylinski (LSU)
Brylinski (LSU)



SD3 Goals V._

Goal: Develop novel biomolecular materials guided by
computational/experimental collaboration for the encapsulation,
delivery, and release of therapeutics to targeted tissues.

Simulation challenges: Carrier sizes (1 to 100nm), time scales for
assembly/delivery (milliseconds or more), accurate free energy
evaluation, efficient use of computational resources

Focus 1: Polymeric Unimolecular Focus 2: Self-Assembled
Drug Delivery Vehicles Drug Delivery Vehicles
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SD3 Milestones: Where we stand V‘V
Focus 1. Unimolecular Drug Delivery Vehicles

e Synthesize modular set of amphipathic monomers/polymers (Grayson)
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SD3 Milestones: Where we stand V‘V

Focus 1. Unimolecular Drug Delivery Vehicles

e Perform large scale MD simulations of polymeric micelles (Rick and
Ashbaugh)

Replica Exchange MD simulations required to sample polymer conformational degrees
of freedom
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SD3 Milestones: Where we stand V.

Focus 1. Unimolecular Drug Delivery Vehicles

e Perform large scale MD simulations of polymeric micelles (Rick and
Ashbaugh)

Solvent
Toluene Water
_ _ Polymer
REDS simulation snapshots
Linear Polymer 26.5 A 22.0A

Cyclic Polymer 18.9 A 16.6 A
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SD3 Milestones: Where we stand

Focus 2: Self Assembled Drug Delivery Vehicles

Molecular dynamics simulation of bile salts
Moldovan (LSU)

Self-assembly of bile salts into Interaction with a Vitamin E (a-tocopherol) phase
micelles '
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Assemblies containing bile salts or their
derivatives have been used in drug delivery.



SD3 Milestones: Where we stand V‘V

Focus 2: Self Assembled Drug Delivery Vehicles

Molecular dynamics simulation of linear peptide analogs (LPAS)
Moldovan (LSU)

LPA structure Interaction of single LPAs Micellization & interaction
with 15% DPPS, 85% DPPC of a micelle with a bilayer
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' Experiments by Gupta et bilayer

. al.[1] showed thatn =7 |

. LPAs do not affect bilayers after 285 ns
substantially, but n = 11
LPAs do.

Peptide analogs could be useful in drug
[1] A. Gupta et al., Eur. Biophys. J. Biophy. 40, 727 (2011). delivery or as drugs themselves



SD3 Milestones: Where we stand V‘V

Focus 2: Self Assembled Drug Delivery Vehicles

Molecular dynamics simulation of vitamin E in DMPC lipid bilayers
Moldovan (LSU)

Flip-flop and dimer aggregation
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Free energy calculations show that flip-flop of 1 a-tocophoerol has a barrier of about 4 times the
thermal energy, and dimer aggregation is favored by about 3.5 times the thermal energy.

Vitamin E acts as an antioxidant to protect
unsaturated lipids in cell membranes.
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SD3 Milestones: Where we stand V.V

Focus 2: Self Assembled Drug Delivery Vehicles

Molecular dynamics simulation of DNA nucleotides in nanoslits
Moldovan (LSU), Nikitopoulos (LSU)

Time of flight based DNA 3 nm wide C nanoslit simulations More realistic conditions
sequencing 1 , T e
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Equilibrium MD for average forces
on dNMPs as a function of position
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Single particle Brownian dynamics
simulations with realistic driving
forces and times

Time of flight over 5.9 um (us)

Extrapolation from simulations with
dNMP velocities around 1 m/s > 5.9
um channel length, 10 us/dNMP

1 strand of double-stranded DNA
might be cut up into individual
nucleotides (dNMPs) and sent
through nanochannels with
sensors at multiple locations.

0.48 cm/s max velocity, nucleotide
distribution across slit from
equilibrium simulations, other
assumptions - 250 um channel,
390 ms/dNMP

Time of flight based sequencing would only require the detection of
the presence of a nucleotide and not its identity at each sensor.



Focus 1 and 2

Molecular Simulations to obtain forces on a colloidal particle to ‘.

be used in a developed hybrid MD/continuum
Moldovan (LSU), Nikitopoulos (LSU)

Potential of Mean Force (PMF) using SMD and ABF method
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SD3 Mllestones Where we stand V.V

Prof. Reily (Xavier) and students have

s studied docking of isoforms (/) of the

0 "4 Leliver X receptor to gauge fidelity of models
LIS at predicting selective binding.

Prof. Brylinski (LSU) and coworkers have developed
ultra-fast Replica Exchange Monte Carlo ligand ¢
docking methods that take advantage of GPU ////
computational efficiencies to screen drug candidates. m!! ;m-m;n;;“

v ’ Prof. Derosa (LATech/Grambling) and
students have worked on modeling
nanoparticle uptake through leaky
tumor capillaries and effect of red
blood cells on delivery efficacy
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SD3 Milestones V.f

Milestones Y1 | Y2 |Y3 Y4 | Y5
~ | Synthesize monomer library to explore polymer
— encapsulation based on architecture/chemistry e 2 3 e e On Track
%)
> Develop molecular potentials to model
O = . . . Done
Lclf encapsulation in unimolecular micelles
Perform molecular simulations to model capture
— | and release of drugs by unimolecular micelles . . On Track
RS nthesize, characterize, and assess new
Y . X X On Track
transmembrane drug delivery systems
Experimentally utilize, validate, and improve the
N newly developed computational models for self- X On Track
g . assembled drug carriers
O
o Use MD and CG methods to study the mechanisms
LL . X On Track
of cellular absorption of drugs
Develop new hybrid MD/continuum and coarse-
grained accelerated simulation strategies to link X X On Track
_ | length/time scales in biological systems




SD3 Outreach Activities V‘V

Profs. Ashbaugh and Grayson (Tulane)
have taught “Chemistry and
 Engineering Science in the Community”
d at local high schools every Spring siRgEe

szr(.)937erosa (LATech/Grambling) has
engaged high school classes across

I the state in Speaking of Science
presentations

AT

LSU SD3 researchers participated in nano-
science demos at the LSU Super Science In

i Oct. 2012 with over 1600 people In attendance.
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