

Louisiana Alliance for Simulation-Guided Materials Applications

SD2: Energy Materials

Ramu Ramachandran

The goal of this SD is to study materials for the generation, conversion, and storage of energy using experimentally validated computational methods.

Electrochemical Capacitors
Based on Nanotube ForestsElectrochemical Capacitors
Hydrogen Storage
MaterialsElectrochemical Capacitors
Catalyst MaterialsLithium ion batteries and
electrochemical sensorsElectrochemical sensors

SD2: Energy Materials

• CNT forest-based supercapacitors

Energy Materials

Lithium Ion Batteries and electrochemical sensors

LA Tech, Xavier

- Stable and high-capacity electrode materials.
- YSZ-based exhaust gas sensors.

yttria-stabilized zirconia

Catalysts for Energy Applications

LSU, LA Tech, SUBR, Grambling

- DFT studies of Fischer-Tropsch catalysis
- Nitrogen-doped fullerenes as Ptsubstitutes in hydrogen fuel cells.

Electrochemical Supercapacitors

Tulane, UNO

Focus 1: CNT-based supercapacitors

Lawrence Pratt

Noshir Pesika

Steve Rick

http://mitei.mit.edu/news/novel-ultracapacitor

- Electrochemical capacitors based on carbon nanotube forests show great potential.
- A molecular level understanding of the interaction of CNT's with the electrolyte is needed.

Propylene carbonate droplet contact angle with graphite - experiment

Propylene carbonate droplet contact angle with graphite - simulation.

X. You, M. I. Chaudhari, L. R. Pratt, N. Pesika, K. M. Aritakula, and S. W. Rick, "Interfaces of propylene carbonate," *J. Chem. Phys.* **138**, 114708 (2013).

Focus 1: CNT-based supercapacitors

The first direct simulation of pore-filling in a CNT supercapacitor

Computer model: $(C_2H_5)_4N^+..BF_4^-$ in propylene carbonate interacting with a carbon nanotube forest.

Direct numerical simulation: filling of CNT forest with electrolyte solution

200

100

A molecular level understanding of the distribution of ions in the CNT forest and the charge transfer during charge-discharge cycles has been obtained.

300

400

500

Focus 1: CNT-based supercapacitors

Direct simulation of filling: twice the reservoir size

X. You and L. R. Pratt, preliminary results

Focus 1: CNT-based supercapacitors

See posters (p. 5, 33, 81)

SD2 Focus 1 Milestones

Lithium Ion Batteries

LA Tech, Xavier

Focus 2(a): Li Ion Batteries

Lamar Meda

Collin Wick

GENERAL INTRODUCTION/MOTIVATION FOR THIS WORK

Figure 1*: Revenue contributions by different battery chemistries

Need for :

Highly reactive materials with much higher energy and power density

High cyclability- electrodes maintain structural integrity upon multiple charge-discharge cycles

Experimental motivation for this work

- Experimental studies on RuO₂ nanoparticles reported by Balaya et al.:
 - With "deep discharge," electrodes cycle only twice before losing capacity.
- Experimental studies on RuO₂
 "nanoplates" by Prof. Meda, Xavier University:
 - Stopping short of deep discharge, can cycle many times without loss of capacity.
- In both cases, the first discharge curve looks significantly different from subsequent discharges, suggesting that some permanent changes occur in the electrode in the first cycle.

RuO₂ Nanoplates Grown by Chemical Vapor Deposition

L. Meda, Xavier University

Field Emission SEM images of RuO₂ nanoplates deposited on stainless 304Lsubstrates.

PXRD patterns of RuO_2 thin films (*stainless steel patterns)

The starting RuO₂ structures for the first and subsequent discharges are different!

(a) First lithiation

(b) First delithiation

Simulations provide nearly quantitative agreement with experimental observations!

- Posters:
- Metal oxide nanoparticles as electrode materials (p. 85)
- RuO₂ and other crystalline metal oxides (p. 89)

Electrochemical sensors

LA Tech

Focus 2(b): Electrochemical Sensors

Erica Murray

Weizhong Dai

Automotive NO_x Sensors *Murray Research Group*

- Commercial NO_x exhaust gas sensor systems can detect up to 10 ppm.
- New emission standards require greater sensitivity.
- Conventional NO_x Sensor Design:
 - Dense electrolyte and porous electrodes architecture
 - NO_x sensitivity capable down to 10 ppm
- Novel NO_x Sensor Design:
 - Porous electrolyte microstructure with dense electrodes
 - Potential for NO_x sensitivity down to 1 ppm
 - Novel porous microstructure is promising for satisfying future emission standards

Focus 2(b): Electrochemical sensors

NGK commercial NO_x Sensor

- Research Challenges:
 - Achieving ideal porosity
 - Excess porosity lowers sensitivity
 - Insufficient porosity limits gas diffusion
 - Identifying reaction mechanisms impacting sensing

- <u>Research Aim</u>:
 - Correlate YSZ synthesis methods to porosity.
 - Determine sensitivity of various synthesized YSZ.

- Image analysis algorithms analyze SEM images,
- Provide input to mathematical models that estimate porosity.

Research Highlights:

- Greater NO_x sensitivity and stability achieved, particularly for NO_x concentrations down to 5 ppm as the porosity decreased to 46%.
- Dissociative adsorption of O₂ appeared to be the dominant rate limiting reaction, based on impedance spectroscopy and modeling results.
- The porous YSZ based NO_x sensor could be tuned to give a more rapid response.

Sensor Response to NO Gas

Reaction path: oxygen surface reactions

NO association with adsorbed O_2 on a Zr surface site, followed by O_2 dissociative adsorption, atomic oxygen diffusion, and further NO₂ formation.

Extrapolated data at 62% YSZ porosity (~126 kJ/mol) indicates the calculated barriers are in reasonable agreement with experiments, especially when the RPBE functional is used.

Eqn. 3	Theory Level						
	PWC	PW91*	PBE*	RPBE*			
∆U (kJ/mol)	156.2	137.7	133.5	123.6			
ΔG(650°C) (kJ/ <u>mol</u>)	181.7	163.2	159.0	149.1			

Focus 2(b): Electrochemical sensors

SD2 Focus 2 Milestones

Milestones	Y1	Y2	Y3	Y4	Y5	
Computational study of lithiumion adsorption on metal oxide nanoparticles.			V			Done
Computational study of lithium ion adsorption on metal oxide thin films and other promising electrode materials.			X	X	X	On Track
Experimental study of nanostructured metal oxides as potential electrode materials for lithium ion batteries.		X	X	x	x	On Track
Multi-scale computational modeling of the kinetics and thermodynamics of NOx and O ₂ reactions on YSZ sensors for vehicle exhaust applications.			X	x	x	On Track
Fabrication and testing of YSZ sensors for NOx and O_2 in diesel exhaust streams.			X	x	x	On Track
Update VisTrails so that it can be used for workflow of lithium-ion battery tomography studies.			X	X	X	On Track

Catalysts for Energy **Applications**

LSU, LA Tech, Southern

Grambling

Focus 3: Catalysis

Les Butler

Barry Dellinger Daniela Mainardi

Bin Chen

Ramu

Collin Wick Ramachandran

Towards rapid computational evaluation of Fischer-Tropsch catalysts

Shuo Yao, Oneka Cummings, Josh Riggs, Collin Wick and R. Ramachandran

- CO binding energies very difficult to get agreement with experiments.
- Developing computational protocols using DFT functionals developed by Perdew – with some success!
- Collaborating with a North Louisiana start-up – Jupiter Fuels (> \$3M in venture capital).
- Modeling CO binding on <u>catalyst</u> <u>nanowire tips</u>.

http://www.asi20.com/page9/index.html

Focus 3: Catalysis

Louisiana EPSCoR

Fischer-Tropsch Synthesis

Fernando Soto, Purnima Kharidehal, Suraj Gyawali and Daniela Mainardi Louisiana Tech University

Core-shell nanoparticles investigated in the context of FTS mechanism

- CO bonds strongly to Co top sites in pure Co and in CoNi systems
- CO bonds strongly to mixed CoFe hollow sites in CoFe systems

- The energy cost to hydrogenate CO varies as the composition of the nanocluster is tweaked
- Co-shell (Fe)-core at a 1:1 ratio shows the most promising result with an energy cost as low as 0.1 eV for the initiation step

Fe is preferred over Ni when used as core element in a Co core-shell catalysts.

Focus 3: Catalysis

Fischer-Tropsch Synthesis

Fernando Soto, Purnima Kharidehal, Suraj Gyawali and Daniela Mainardi Louisiana Tech University

See poster (p. 141)

Focus 3: Catalysis

Nitrogen-doped fullerenes as fuel cell catalysts

Can N-doped C60 replace Pt in hydrogen fuel cells?

Spin-polarized DFT calculations of nitrogen-doped C_{60} fullerene (N- C_{60}) as a cathode catalyst for hydrogen fuel cells.

Minimum energy path for H_2O formation process on O(1) through (a) direct pathway and (b) indirect pathway; and H_2O formation process on O(2) through (c) direct pathway and (d) indirect pathway, on HH Pauling site of N-C₆₀ fullerene. Embedded images show the atomic structures of the initial, intermediate, and final states of the reaction process, respectively.

F. Gao, G.L. Zhao, S. Yang, J. J. Spivey, "Nitrogen-Doped Fullerene as a Potential Catalyst for Hydrogen Fuel Cells", *Journal of the American Chemical Society*, 2013, **135**, 3315-3318.

Collaboration between LA-SiGMA and DoE EFRC.

Focus 3: Catalysis

SD2 Focus 3 Milestones

Milestones	Y1	Y2	Y3	Y4	Y5	
Develop force fields with environment-dependent charges for one metal oxide system.	X					Done
Use DFT-based ab initio MD and kinetic Monte Carlo methods to study Fischer- Tropsch and related reactions on metal/metal oxide catalytic systems.			X	×	x	On Track
Exploration of spin-state dependent structure and energetics of metal oxide clusters, especially (FeO) _n .			X	x	x	On Track
Perform computational modeling of PCDD/PCDF production on metal oxide clusters.		X	X	x		On Track
Develop computational methods for evaluating catalytic sites in carbon nanotubes for hydrogen fuel cells.		X	ŀ			Done
Computational evaluation of nitrogen doped CNT's and fullerenes as alternatives for platinum in hydrogen fuel cells.			X	x	x	On Track

Other notable SD2 accomplishments

Shawn Cole, PhD student at LA Tech received an Indo-US Science and Technology Forum fellowship to visit and work at IIT-Delhi (ethanol fuel cells).

Steve Rick, UNO, received a \$450,000 grant from NSF: "The Effects of Charge Transfer on Aqueous and Ionic Systems."

Daniela Mainardi, LA Tech, receives AIChE Excellence and Service Award; partner in North Carolina A&T NSF CREST Center for biofuels.

LA Tech REU and RET programs (including "STEM Week") focused on "Energy Materials."

On the way to NIST neutron tomography

"ICTMS" Ghent, Belgium, July, 2013 Ham: neutron tomography and hydrogen storage Olatinwo: X-ray interferometry movies and flame retardants Butler: new algorithm for X-ray interferometry

APS: "Fire at the beamline" X-ray interferometry movies and flame retardants.

Prof. Les Butler's activities:

- NIST neutron imaging (2)
- Synchrotron Radiation Instr mtg
- Summer 2012: 2 REU, 2 RET

(REU wins NSF grad. fellowship)

- Summer 2013: 1 REU, 1 RET, 1 high school student:
 - spherical harmonic for particle
 - iPad iBook visualization