How To Do Simple Calculations With Quantum ESPRESSO

Shobhana Narasimhan
Theoretical Sciences Unit
JNCASR, Bangalore
shobhana@jncasr.ac.in

I. About The Quantum ESPRESSO Distribution

Quantum ESPRESSO

- www.quantum-espresso.org

quantumespresso
HOME ::PROJECT ::WHATCAN QE DO ::DOWNLOAD ::LEARN ::PSEUDO ::TOOLS :: QE WIKI ::CONTACTS ::QUOTE ::LOGOS ::

```
25 May 2011 Version 4.3.1 of Quantum ESPRESSO is available for download.
```

05 May 2011 -enabled beta releas e of Quantum ESPRESSO is available
for download.
01 April 2011
The new release, v.4.3, of the Quantum ESPRESSO distribution is available for download.

13 July 2010 Bugfix release v.4.2.1 of the Quantum ESPRESSO distribution is available for download.

10 May 2010
A new version, v.4.2, of the Quantum ESPRESSO distribution is
available for download.
12 April 2010
The final bugfix release, v.4.1.3, of the Quantum ESPRESSO distribution is available for download. This supersedes all previous 4.1.x releases.

Quantum ESPRESSO is an integrated suite of computer codes for electronicstructure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving and ultrasoft).

What I cannot compute, I do not understand [adapted from Richard P. Feynman]

The Quantum ESPRESSO Software Distribution

The DEMOCRITOS center of Italian INFM is dedicated to atomistic simulations of materials, with a strong emphasis on the development of high-quality scientific software

Quantum ESPRESSO is the result of a DEMOCRITOS initiative, in collaboration with several other institutions (ICTP, CINECA Bologna, EPF Lausanne, Princeton University, MIT, Paris VI, Oxford, IJS Ljubljana,...)

Quantum ESPRESSO is a distribution of software for atomistic simulations based on electronic structure, using density-functional theory (DFT), a plane waves (PW) basis set and pseudopotentials (PP)

Quantum ESPRESSO stands for Quantum opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization

Why "Quantum ESPRESSO"?!

Trieste, Tommaseso (ph. G. Crozzoli)

Licence for Quantum ESPRESSO

Quantum ESPRESSO is distributed under the GNU (Gnu's Not Unix) General Public License (GPL), probably the most common free-software license. Basically:

- The source code is available.
- You can do whatever you want with the sources, but if you distribute any derived work, you have to distribute under the GPL the sources of the derived work.

Advantages:

- Everybody - including commercial entities - can contribute.
- Nobody can "steal" the code and give nothing back to the community.

The most successful example is probably the Linux Kernel.

Quantum ESPRESSO: Organization

The distribution is maintained as a single CVS (Concurrent Version System) tree. Available to everyone anytime via anonymous (read-only) access.

- Web site: http://www.quantum-espresso.org
- Wiki: http://www.quantum-espresso.org/index.php/Main_Page contains the updated documentation
- Developers' portal: http://www.qe-forge.org integrated developer environment, open to external contributions

Mailing lists:

- pw_users: used by developers for announcements about Quantum ESPRESSO
- pw_forum: for general discussions (all subscribed users can post)

Quantum ESPRESSO as a distribution

Quantum ESPRESSO aims at becoming a distribution of packages, rather than a single, monolithic, tightly integrated package. Main packages:

- PWscf: self-consistent electronic structure, structural relaxation, molecular dynamics
- CP/FPMD: variable-cell Car-Parrinello molecular dynamics

They share a common installation method, input format, PP format, data output format, large parts of the basic code. More packages:

- PHonon: linear-response calculations (phonons, dielectric properties)
- PostProc: graphical and postprocessing utilities (density of states, STM, etc.)
- atomic: pseudopotential generation code
- PWGui: a Graphical User Interface for production of input files

Quantum ESPRESSO as a distribution

OTHER PACKAGES
WANNIER90: Maximally localized Wannier functions
Pwcond: Ballistic conductance
Want: Coherent Transport from Maximally Localized Wannier Functions
Xspectra: Calculation of x-ray near edge absorption spectra
gIPAw: EPR and NMR Chemical Shifts

Coming Soon:
GWw: GW Band Structure with Ultralocalized Wannier Fns. TD-DFT: Time-Dependent Density Functional Pert. Theory

What Can Quantum ESPRESSO Do?

- Both Γ point and k-point calculations.
- Both insulators and metals, with smearing.
- Any crystal structure or supercell form.
- Norm conserving pseudopotentials, ultrasoft PPs, PAW.
- LDA, GGA, DFT+U, hybrid functionals, exact exchange, meta GGA, van der Waals corrected functionals.
- Spin polarized calculations, non-collinear magnetism, spin-orbit interactions.
- Nudged elastic band to find saddle points.

II. Doing a "Total Energy" Calculation with the PWscf Package of QE: The SCF Loop

The Kohn-Sham problem

- Want to solve the Kohn-Sham equations:

$$
\underbrace{\left[-\frac{1}{2} \nabla^{2}+V_{\text {nuc }}(\mathbf{r})+V_{H}[n(\mathbf{r})]+V_{X C}[n(\mathbf{r})]\right]}_{H} \psi_{i}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r})
$$

- Note that self-consistent solution necessary, as H depends on solution:

$$
\left\{\psi_{i}\right\} \rightarrow n(r) \rightarrow H
$$

- Convention:

$$
e=\hbar=m_{e}=1
$$

Self-consistent Iterative Solution

Problem solved! Can now calculate energy, forces, etc.

Plane Waves \& Periodic Systems

- For a periodic system:

$$
\psi_{\mathbf{k}}(\mathbf{r})=\frac{1}{\Omega} \sum_{\mathbf{G}} c_{\mathbf{k}, \mathbf{G}} e^{i(\mathbf{k}+\mathbf{G}) \boldsymbol{r}}
$$

where $\mathbf{G}=$ reciprocal lattice vector

- The plane waves that appear in this expansion can be represented as a grid in k-space:

- Only true for periodic systems that grid is discrete.
- In principle, still need infinite number of plane waves.

Truncating the Plane Wave Expansion

- In practice, the contribution from higher Fourier components (large $|\mathbf{k}+\mathbf{G}|$) is small.
- So truncate the expansion at some value of $|\mathbf{k}+\mathbf{G}|$.
- Traditional to express this cut-off in energy units:

$$
\frac{\hbar^{2}|\mathbf{k}+\mathbf{G}|^{2}}{2 m} \leq E_{c u t}
$$

Input parameter ecutwfc

Checking Convergence wrt ecutwfc

- Must always check.
- Monotonic (variational).

Silicon: Convergence wrt plane wave cutoff

Step 0:
 Defining the (periodic) system

Namelist 'SYSTEM'

How to Specify the System

- All periodic systems can be specified by a Bravais Lattice and an atomic basis.

-10010010010010
- + - + - + - + - + -
- looloolooloolo
- + - + - + - + - + -

-looloolooloolo

-looloolooloolo
$-\perp-+-+-+-+$ -
-looloolooloolo
$-\downarrow-\downarrow-+-+-+$ -

How to Specify the Bravais Lattice / Unit Cell

Input parameter ibrav

- Gives the type of Bravais lattice (SC, BCC, Hex, etc.)

Input parameters \{celldm (i) \}

- Give the lengths [\& directions, if necessary] of the lattice vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$
- Note that one can choose a non-primitive unit cell (e.g., 4 atom SC cell for FCC structure).

Atoms Within Unit Cell - How many, where?

Input parameter nat

- Number of atoms in the unit cell

Input parameter ntyp

- Number of types of atoms

FIELD ATOMIC_POSITIONS

- Initial positions of atoms (may vary when "relax" done). -Can choose to give in units of lattice vectors ("crystal") or in Cartesian units ("alat" or "bohr" or "angstrom")

What if the system is not periodic?

- Example 1: Want to study properties of a system with a surface.
- Presence of surface \Rightarrow No periodicity along z.

Surface atom

Bulk atom

What if the system is not periodic?

- Example 1: Want to study properties of a system with a surface.
- Presence of surface \Rightarrow No periodicity along z.
- Use a supercell: artificial periodicity along z by

What if the system is not periodic?

Example 2: Want to study properties of a nanowire.

Example 3: Want to study properties of a cluster

What if the system is not periodic?

Example 2: Want to study properties of a nanowire \Rightarrow introduce artificial periodicity along $y \& z$.

Example 3: Want to study properties of a cluster \Rightarrow introduce artificial periodicity along $x, y \& z$.

What if the system is not periodic?

- Example 4: Want to study a system with a defect, e.g., a vacancy or impurity:

What if the system is not periodic?

- Example 4: Want to study a system with a defect, e.g., a vacancy or impurity:

$0000000 \mid$ 00000000 00000000 0000000 0000000 0000000 0000000	$\begin{cases}0000000 \\ 00000000 \\ 00000000 \\ 00000000 \\ 00000000 \\ 00000000 \\ 00000000\end{cases}$	0000000 0000000 0000000 0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000 0000000 0000000	$\begin{cases}0000000 \\ 00000000 \\ 0000000 \\ 0000000 \\ 0000000 \\ 0000000 \\ 0000000 ~\end{cases}$	

What if the system is not periodic?

- Example 5: Want to study an amorphous or quasicrystalline system.

What if the system is not periodic?

- Example 5: Want to study an amorphous or quasicrystalline system: approximate by a periodic system (with large unit cell).

Artificially Periodic Systems \Rightarrow Large Unit Cells

- Note: In all these cases, to minimize the effects of the artificially introduced periodicity, need a large unit cell.

$$
\Downarrow
$$

- Long $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ (primitive lattice vectors)
\downarrow
- Short $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ (primitive reciprocal lattice vectors)
\Downarrow
- Many G's will fall within $E_{\text {cut }}$ sphere!

Step 1: Obtaining $V_{\text {nuc }}$

Problem solved! Can now calculate energy, forces, etc.

Nuclear Potential

- Electrons experience a Coulomb potential due to the nuclei.
- This has a known and simple form:

- But this leads to computational problems!

Problem for Plane-Wave Basis

Core wavefunctions: sharply peaked near nucleus.

Valence wavefunctions: lots of wiggles near nucleus.

High Fourier components present
i.e., need large $E_{\text {cut }}$ ©

Solutions for Plane-Wave Basis

Core wavefunctions: sharply peaked near nucleus.

Valence wavefunctions: lots of wiggles near nucleus.

High Fourier components present
i.e., need large $E_{\text {cut }}$

Don't solve for the core electrons!

Remove wiggles from valence electrons.

Pseudopotentials

- Replace nuclear potential by pseudopotential
- This is a numerical trick that solves these problems
- There are different kinds of pseudopotentials (Norm conserving pseudopotentials, ultrasoft pseudopotentials, etc.)
- Which kind you use depends on the element.

Pseudopotentials for Quantum Espresso - 1

- Go to http://www.quantum-espresso.org; Click on "PSEUDO"

Pseudopotentials for Quantum Espresso - 2

- Click on element for which pseudopotential wanted.

Pseudopotentials for Quantum-ESPRESSO

```
Name: Oxygen
Symbol: O
Atomic number: }
Atomic configuration: [He] 2s2 2p4
Atomic mass: 15.9994 (3)
Available pseudopotentials:
O.blvp-mt.UPF (details)
    Becke-Lee-Yang-Parr (BLYP) exch-corr
    Martins-Troullier
O.pbe-rrkius.UPF (details)
    Perdew-Burke-Ernzerhof (PBE) exch-corr
    Rabe Rappe Kaxiras Joannopoulos (ultrasoft)
O.pbe-van bm.UPF (details)
    Perdew-Burke-Ernzerhof (PBE) exch-corr
    Vanderbilt ultrasoft
                author: bm
O.pz-mt.UPF (details)
    Perdew-Zunger (LDA) exch-corr
    Martins-Troullier
O.pz-rrkius.UPF (details)
    Perdew-Zunger (LDA) exch-corr
    Rabe Rappe Kaxiras Joannopoulos (ultrasoft)
O.blyp-van ak.UPF (details)
    Becke-Lee-Yang-Parr (BLYP) exch-corr
    Vanderbilt ultrasoft
        author: ak
O.pz-rrkius.UPF (details)
Perdew-Zunger (LDA) exch-corr
Rabe Rappe Kaxiras Joannopoulos (ultrasoft)
O.blyp-van ak.UPF (details)
Vanderbilt ultrasoft
author: ak
```


Pseudopotential's name gives information about :
 - type of exchangecorrelation functional
 - type of pseudopotential
 - e.g.:

Element \& $V_{i o n}$ for Quantum-ESPRESSO

e.g, for calculation on BaTiO_{3} :

```
ATOMIC_SPECIES
Ba 137.327 Ba.pbe-nsp-van.UPF
Ti 47.867 Ti.pbe-sp-van_ak.UPF
O 15.999 O.pbe-van_ak.UPF
```

- ecutwfc, ecutrho depend on type of pseudopotentials used (should test).
- When using ultrasoft pseudopotentials, set ecutrho $=8-12 \times$ ecutwfc !!

Element \& $V_{\text {ion }}$ for Quantum-ESPRESSO

- Should have same exchange-correlation functional for all pseudopotentials.

Step 2: Initial Guess for $n(\mathbf{r})$

Problem solved! Can now calculate energy, forces, etc.

Starting Wavefunctions

The closer your starting wavefunction is to the true wavefunction (which, of course, is something you don't necessarily know to start with!), the fewer the scf iterations needed.

startingwfc	'atomic'	Superposition of atomic orbitals
	'random'	
	'file'	

"The beginning is the most important part of the work" - Plato

Steps 3 \& 4: Effective Potential

Exchange-Correlation Potential

- $V_{X C} \equiv \delta E_{X C} \delta$ n contains all the many-body information.
- Known [numerically, from Quantum Monte Carlo ; various analytical approximations] for homogeneous electron gas.
- Local Density Approximation:
$E_{x c}[n]=\int n(\mathbf{r}) V_{x c}{ }^{\text {HOM }}[n(\mathbf{r})] d \mathbf{r}$
-surprisingly successful!
pz (in name of pseudopotential)

- Generalized Gradient Approximation(s): Include terms involving gradients of $n(\mathbf{r})$
pw91, pbe (in name of pseudopotential)

Step 5: Diagonalization

Diagonalization

- Need to diagonalize a matrix of size $N_{P W} \times N_{P W}$
- $N_{P W} \gg N_{b}=$ number of bands required $=N_{e} / 2$ or a little more (for metals).
- OK to obtain lowest few eigenvalues.
- Exact diagonalization is expensive!
- Use iterative diagonalizers that recast diagonalization as a minimization problem.

Input parameter diagonalization

-which algorithm used for iterative diagonalization Input parameter nbnd
-how many eigenvalues computed for metals, choose depending on value of degauss

Step 6: New Charge Density

Problem solved! Can now calculate energy, forces, etc.

Brillouin Zone Sums

- Many quantities (e.g., $n, E_{\text {tot }}$) involve sums over \mathbf{k}.
- In principle, need infinite number of k's.
- In practice, sum over a finite number: BZ "Sampling".
- Number needed depends on band structure.
- Typically need more k's for metals.
- Need to test convergence wrt k-point sampling.

$$
\langle P\rangle=\frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k} \in B Z} P(\mathbf{k}) w_{\mathbf{k}}
$$

Types of k-point meshes

- Special Points: [Chadi \& Cohen]

Points designed to give quick convergence for particular crystal structures.

- Monkhorst-Pack:

Equally spaced mesh in reciprocal space.
May be centred on origin ['non-shifted'] or not ['shifted']

Irreducible Brillouin Zone

- IBZ depends on symmetries of system.
- Can save computational time by using appropriately weighted k-points from IBZ alone.
- For 'automatic' k-points, code will 'reduce' to IBZ.

- May not want to maintain symmetries in relaxation/MD.

Input parameter nosym

Convergence wrt BZ sampling

Madhura Marathe
Note: Differences in energy usually converge faster than absolute value of total energy because of error cancellation (if supercells \& k-points are identical or commensurate).

Problems with Metals

- Recall:

$$
\langle P\rangle=\frac{\Omega}{(2 \pi)^{3}} \sum_{\text {nocc } c B Z} \int_{n} P_{n}(\mathbf{k}) d^{3} k
$$

- For metals, at $T=0$, this corresponds to (for highest band) an integral over all wave-vectors contained within the Fermi surface, i.e., for highest band, sharp discontinuity in k-space between occupied and unoccupied states...need many k-points to reproduce this accurately.
- Also can lead to scf convergence problems because of band-crossings above/below Fermi ${ }_{\text {Fermi Surface of } \mathrm{Cu}}$ level.

- Solve by "smearing".

Smearing in Quantum-ESPRESSO

occupations 'smearing'

Instruction: use smearing

```
smearing 'gaussian'
'methfessel-paxton'
'marzari-vanderbilt'
'fermi-dirac'
```

degauss Smearing width

Methfessel \& Paxton, Phys. Rev. B 40, 3616 (1989). Marzari \& Vanderbilt, Phys Rev. Lett. 82, 3296 (1999).

Step 7: Check if Convergence Achieved

> Problem solved! Can now calculate energy, forces, etc.

Testing for scf convergence

- Compare nth and ($\mathrm{n}-1$)th approximations for density, and see if they are close enough that selfconsistency has been achieved.
- Examine squared norm of difference between the charge density in two successive iterations...should be close to zero.

Input parameter conv_thr

Step 8: Mixing

Problem solved! Can now calculate energy, forces, etc.

Mixing

- Iterations n of self-consistent cycle:
- Successive approximations to density:

$$
n_{\text {in }}(n) \rightarrow n_{\text {out }}(n) \rightarrow n_{\text {in }}(n+1) .
$$

- $n_{\text {out }}(n)$ fed directly as $n_{\text {in }}(n+1)$?? No, usually doesn't converge.
- Need to mix, take some combination of input and output densities (may include information from several previous iterations).
- Goal is to achieve self consistency $\left(n_{\text {out }}=n_{\text {in }}\right)$ in as few iterations as possible.

Mixing in Quantum-ESPRESSO

Input parameter mixing_mode
-Prescription used for mixing.

Input parameter mixing_beta
-How much of new density is used at each step

- Typically use value between $0.1 \& 0.7$

Output Quantities: Total Energy

- Perhaps the most important output quantity is the TOTAL ENERGY
- Can use, e.g., to optimize structure
- e.g., for a cubic crystal, where the structure can be specified by a single parameter (side of

Silicon
 cube):

III. Forces \&
 Geometry Optimization

Forces

- Need for geometry optimization and molecular dynamics.
- Could get as finite differences of total energy - too expensive!
- Use force (Hellmann-Feynman) theorem:
- Want to calculate the force on ion I :

$$
\mathbf{F}_{I}=-\frac{d}{d \mathbf{R}_{I}}\langle\Psi| H|\Psi\rangle
$$

- Get three terms:

$$
\mathbf{F}_{I}=-\langle\Psi| \frac{\partial H}{\partial \mathbf{R}_{I}}|\Psi\rangle-\left\langle\frac{\partial \Psi}{\partial \mathbf{R}_{I}}\right| H|\Psi\rangle-\langle\Psi| H\left|\frac{\partial \Psi}{\partial \mathbf{R}_{I}}\right\rangle
$$

When $|\Psi\rangle$ is an eigenstate, $\quad H|\Psi\rangle=E|\Psi\rangle$
-Substitute this...

Forces (contd.)

- The force is now given by

$$
\begin{aligned}
\mathbf{F}_{I} & =-\langle\Psi| \frac{\partial H}{\partial \mathbf{R}_{I}}|\Psi\rangle-E\left\langle\left.\frac{\partial \Psi}{\partial \mathbf{R}_{I}} \right\rvert\, \Psi\right\rangle-E\left\langle\Psi \left\lvert\, \frac{\partial \Psi}{\partial \mathbf{R}_{I}}\right.\right\rangle \\
& =-\langle\Psi| \frac{\partial H}{\partial \mathbf{R}_{I}}|\Psi\rangle-E \frac{\partial}{\partial \mathbf{R}_{I}}\langle\Psi \mid \Psi\rangle
\end{aligned}
$$

- Note that we can now calculate the force from a calculation at ONE configuration alone - huge savings in time.
- If the basis depends upon ionic positions (not true for plane waves), would have extra terms = Pulay forces.
- $|\Psi\rangle$ should be exact eigenstate, i.e., scf well-converged!

Input parameter tprnfor

An Outer Loop: Ionic Relaxation

Geometry Optimization With Forces

- Especially useful for optimizing internal degrees of freedom, surface relaxation, etc.

$$
\text { calculation }=\text { 'relax' }
$$

- Choice of algorithms for ionic relaxation, e.g., steepest descent, BFGS.

NAMELIST \&IONS

Input parameter ion_dynamics

IV. Structure of PWscf Input Files

PWscf input file

- For documentation about input parameters for PWscf, read INPUT_PW.html in the Doc subdirectory.
- The PWscf input file is structured into NAMELISTS and INPUT_CARDS.

PWscf NAMELISTS in Input File

- There are three mandatory NAMELISTS :
- \&CONTROL input variables that control the type of calculation performed and the amount of I / O.
- \&SYSTEM input variables that specify the system.
- \&ELECTRONS input variables that control the algorithms used to reach a self-consistent solution of the KohnSham equations.
- There are other (optional) namelists...

PWscf INPUT_CARDS in Input File

- There are three mandatory INPUT_CARDS:
- ATOMIC_SPECIES name, mass and pseudopotential used for each species in system.
- ATOMIC_POSITIONS coordinates of each atom in unit cell.
- K POINTS coordinates and weights of the k-points used for BZ sums..
- There are other (optional) INPUT_CARDS...

Other Features / Types of Calculations

- Spin Polarized Calculations (Magnetism)
- Density Functional Perturbation Theory (Phonons)
- Nudged Elastic Band (Barriers)
- Molecular Dynamics
- ...and much, much more!

It's not a bird...
It's not Superman...
It's a Plane Wave!

The End!

Have fun with Quantum-ESPRESSO!

